Composition, Structure and Origin of the Moon

Paolo A. Sossi, Miki Nakajima, Amir Khan
{"title":"Composition, Structure and Origin of the Moon","authors":"Paolo A. Sossi, Miki Nakajima, Amir Khan","doi":"arxiv-2408.16840","DOIUrl":null,"url":null,"abstract":"Here we critically examine the geophysical and geochemical properties of the\nMoon in order to identify the extent to which dynamical scenarios satisfy these\nobservations. New joint inversions of existing lunar geophysical data (mean\nmass, moment of inertia, and tidal response) assuming a laterally- and\nvertically homogeneous lunar mantle show that, in all cases, a core with a\nradius of 300$\\pm$20 km ($\\sim$0.8 to 1.5 % the mass of the Moon) is required.\nHowever, an Earth-like Mg# (0.89) in the lunar mantle results in core densities\n(7800$\\pm$100 kg/m$^3$) consistent with that of Fe-Ni alloy, whereas FeO-rich\ncompositions (Mg# = 0.80--0.84) require lower densities (6100$\\pm$800\nkg/m$^3$). Geochemically, we use new data on mare basalts to reassess the bulk\ncomposition of the Moon for 70 elements, and show that the lunar core likely\nformed near 5 GPa, 2100 K and $\\sim$1 log unit below the iron-w\\\"ustite buffer.\nMoreover, the Moon is depleted relative to the Earth's mantle in elements with\nvolatilities higher than that of Li, with this volatile loss likely having\noccurred at low temperatures (1400$\\pm$100 K), consistent with mass-dependent\nstable isotope fractionation of moderately volatile elements (e.g., Zn, K, Rb).\nThe identical nucleosynthetic (O, Cr, Ti) and radiogenic (W) isotope\ncompositions of the lunar and terrestrial mantles, strongly suggest the two\nbodies were made from the same material, rather than from an Earth-like\nimpactor. Rb-Sr in FANs and Lu-Hf and Pb-Pb zircon ages point Moon formation\nclose to $\\sim$4500 Ma. Taken together, there is no unambiguous geochemical or\nisotopic evidence for the role of an impactor in the formation of the Moon,\nimplying perfect equilibration between the proto-Earth and Moon-forming\nmaterial or alternative scenarios for its genesis.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Here we critically examine the geophysical and geochemical properties of the Moon in order to identify the extent to which dynamical scenarios satisfy these observations. New joint inversions of existing lunar geophysical data (mean mass, moment of inertia, and tidal response) assuming a laterally- and vertically homogeneous lunar mantle show that, in all cases, a core with a radius of 300$\pm$20 km ($\sim$0.8 to 1.5 % the mass of the Moon) is required. However, an Earth-like Mg# (0.89) in the lunar mantle results in core densities (7800$\pm$100 kg/m$^3$) consistent with that of Fe-Ni alloy, whereas FeO-rich compositions (Mg# = 0.80--0.84) require lower densities (6100$\pm$800 kg/m$^3$). Geochemically, we use new data on mare basalts to reassess the bulk composition of the Moon for 70 elements, and show that the lunar core likely formed near 5 GPa, 2100 K and $\sim$1 log unit below the iron-w\"ustite buffer. Moreover, the Moon is depleted relative to the Earth's mantle in elements with volatilities higher than that of Li, with this volatile loss likely having occurred at low temperatures (1400$\pm$100 K), consistent with mass-dependent stable isotope fractionation of moderately volatile elements (e.g., Zn, K, Rb). The identical nucleosynthetic (O, Cr, Ti) and radiogenic (W) isotope compositions of the lunar and terrestrial mantles, strongly suggest the two bodies were made from the same material, rather than from an Earth-like impactor. Rb-Sr in FANs and Lu-Hf and Pb-Pb zircon ages point Moon formation close to $\sim$4500 Ma. Taken together, there is no unambiguous geochemical or isotopic evidence for the role of an impactor in the formation of the Moon, implying perfect equilibration between the proto-Earth and Moon-forming material or alternative scenarios for its genesis.
月球的组成、结构和起源
在此,我们对月球的地球物理和地球化学特性进行了批判性研究,以确定满足这些观测结果的动力学方案的程度。对现有月球地球物理数据(平均质量、惯性矩和潮汐响应)进行新的联合反演,假设月球地幔横向和纵向均质,结果表明,在所有情况下,都需要一个半径为 300$pm$20 km 的内核($\sim$0.8-1.然而,月幔中类似地球的 Mg#(0.89)会导致与铁镍合金一致的内核密度(7800$\pm$100 kg/m$^3$),而富含氧化铁的成分(Mg# = 0.80--0.84)则需要较低的密度(6100$\pm$800 kg/m$^3$)。在地球化学方面,我们利用关于赤泥玄武岩的新数据重新评估了月球上70种元素的组成,结果表明月核可能在5 GPa、2100 K和低于铁-乌斯托缓冲区1个对数单位的地方形成。此外,与地球地幔相比,月球上挥发度高于锂的元素消耗殆尽,这种挥发损失很可能是在低温(1400K/pm100K)下发生的,与中度挥发元素(如Zn、K、Rb)的质量依赖性稳定同位素分馏相一致、月幔和地幔的核合成(O、Cr、Ti)和辐射成因(W)同位素组成完全相同,这有力地表明这两个天体是由相同的物质构成的,而不是由类似地球的撞击物构成的。FANs中的Rb-Sr以及Lu-Hf和Pb-Pb锆石的年龄表明月球的形成接近于4500Ma。总之,没有明确的地球化学或同位素证据表明撞击物在月球形成过程中的作用,这意味着原地球和月球形成物质之间完全平衡,或者月球形成的其他情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信