Ramachandran Prakasam, Julianna Determan, Mishka Narasimhan, Renata Shen, Maamoon Saleh, Gareth Chapman, Komal Kaushik, Paul Gontarz, Kesavan Meganathan, Bilal Hakim, Bo Zhang, James E Huettner, Kristen L Kroll
{"title":"Autism and Intellectual Disability-Associated MYT1L Mutation Alters Human Cortical Interneuron Differentiation, Maturation, and Physiology","authors":"Ramachandran Prakasam, Julianna Determan, Mishka Narasimhan, Renata Shen, Maamoon Saleh, Gareth Chapman, Komal Kaushik, Paul Gontarz, Kesavan Meganathan, Bilal Hakim, Bo Zhang, James E Huettner, Kristen L Kroll","doi":"10.1101/2024.09.11.612541","DOIUrl":null,"url":null,"abstract":"MYT1L is a neuronal transcription factor highly expressed in the developing and adult brain. While pathogenic MYT1L mutation causes neurodevelopmental disorders, these have not been characterized in human models of neurodevelopment. Here, we defined the consequences of pathogenic MYT1L mutation in human pluripotent stem cell-derived cortical interneurons. During differentiation, mutation reduced MYT1L expression and increased progenitor cell cycle exit and neuronal differentiation and synapse-related gene expression, morphological complexity, and synaptic puncta formation. Conversely, interneuron maturation was compromised, while variant neurons exhibited altered sodium and potassium channel activity and reduced function in electrophysiological analyses. CRISPRi-based knockdown similarly impaired interneuron differentiation and maturation, supporting loss of function-based effects. We further defined MYT1L genome-wide occupancy in interneurons and related this to the transcriptomic dysregulation resulting from MYT1L mutation, to identify direct targets that could mediate these phenotypic consequences. Together, this work delineates contributors to the etiology of neurodevelopmental disorders resulting from MYT1L mutation.","PeriodicalId":501269,"journal":{"name":"bioRxiv - Developmental Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.11.612541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
MYT1L is a neuronal transcription factor highly expressed in the developing and adult brain. While pathogenic MYT1L mutation causes neurodevelopmental disorders, these have not been characterized in human models of neurodevelopment. Here, we defined the consequences of pathogenic MYT1L mutation in human pluripotent stem cell-derived cortical interneurons. During differentiation, mutation reduced MYT1L expression and increased progenitor cell cycle exit and neuronal differentiation and synapse-related gene expression, morphological complexity, and synaptic puncta formation. Conversely, interneuron maturation was compromised, while variant neurons exhibited altered sodium and potassium channel activity and reduced function in electrophysiological analyses. CRISPRi-based knockdown similarly impaired interneuron differentiation and maturation, supporting loss of function-based effects. We further defined MYT1L genome-wide occupancy in interneurons and related this to the transcriptomic dysregulation resulting from MYT1L mutation, to identify direct targets that could mediate these phenotypic consequences. Together, this work delineates contributors to the etiology of neurodevelopmental disorders resulting from MYT1L mutation.