ONSEP: A Novel Online Neural-Symbolic Framework for Event Prediction Based on Large Language Model

Xuanqing Yu, Wangtao Sun, Jingwei Li, Kang Liu, Chengbao Liu, Jie Tan
{"title":"ONSEP: A Novel Online Neural-Symbolic Framework for Event Prediction Based on Large Language Model","authors":"Xuanqing Yu, Wangtao Sun, Jingwei Li, Kang Liu, Chengbao Liu, Jie Tan","doi":"arxiv-2408.07840","DOIUrl":null,"url":null,"abstract":"In the realm of event prediction, temporal knowledge graph forecasting (TKGF)\nstands as a pivotal technique. Previous approaches face the challenges of not\nutilizing experience during testing and relying on a single short-term history,\nwhich limits adaptation to evolving data. In this paper, we introduce the\nOnline Neural-Symbolic Event Prediction (ONSEP) framework, which innovates by\nintegrating dynamic causal rule mining (DCRM) and dual history augmented\ngeneration (DHAG). DCRM dynamically constructs causal rules from real-time\ndata, allowing for swift adaptation to new causal relationships. In parallel,\nDHAG merges short-term and long-term historical contexts, leveraging a\nbi-branch approach to enrich event prediction. Our framework demonstrates\nnotable performance enhancements across diverse datasets, with significant\nHit@k (k=1,3,10) improvements, showcasing its ability to augment large language\nmodels (LLMs) for event prediction without necessitating extensive retraining.\nThe ONSEP framework not only advances the field of TKGF but also underscores\nthe potential of neural-symbolic approaches in adapting to dynamic data\nenvironments.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of event prediction, temporal knowledge graph forecasting (TKGF) stands as a pivotal technique. Previous approaches face the challenges of not utilizing experience during testing and relying on a single short-term history, which limits adaptation to evolving data. In this paper, we introduce the Online Neural-Symbolic Event Prediction (ONSEP) framework, which innovates by integrating dynamic causal rule mining (DCRM) and dual history augmented generation (DHAG). DCRM dynamically constructs causal rules from real-time data, allowing for swift adaptation to new causal relationships. In parallel, DHAG merges short-term and long-term historical contexts, leveraging a bi-branch approach to enrich event prediction. Our framework demonstrates notable performance enhancements across diverse datasets, with significant Hit@k (k=1,3,10) improvements, showcasing its ability to augment large language models (LLMs) for event prediction without necessitating extensive retraining. The ONSEP framework not only advances the field of TKGF but also underscores the potential of neural-symbolic approaches in adapting to dynamic data environments.
ONSEP:基于大型语言模型的事件预测在线神经符号框架
在事件预测领域,时间知识图谱预测(TKGF)是一项关键技术。以往的方法面临着在测试过程中无法利用经验和依赖单一短期历史的挑战,这限制了对不断变化的数据的适应。本文介绍了在线神经符号事件预测(ONSEP)框架,该框架通过整合动态因果规则挖掘(DCRM)和双历史增强生成(DHAG)进行了创新。DCRM 从实时数据中动态构建因果规则,从而快速适应新的因果关系。与此同时,DHAG 融合了短期和长期历史背景,利用非分支方法来丰富事件预测。我们的框架在不同的数据集上实现了显著的性能提升,Hit@k(k=1,3,10)有了明显改善,展示了它在无需大量重新训练的情况下增强大型语言模型(LLM)进行事件预测的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信