Boolean Matrix Logic Programming

Lun Ai, Stephen H. Muggleton
{"title":"Boolean Matrix Logic Programming","authors":"Lun Ai, Stephen H. Muggleton","doi":"arxiv-2408.10369","DOIUrl":null,"url":null,"abstract":"We describe a datalog query evaluation approach based on efficient and\ncomposable boolean matrix manipulation modules. We first define an overarching\nproblem, Boolean Matrix Logic Programming (BMLP), which uses boolean matrices\nas an alternative computation to evaluate datalog programs. We develop two\nnovel BMLP modules for bottom-up inferences on linear dyadic recursive datalog\nprograms, and show how additional modules can extend this capability to compute\nboth linear and non-linear recursive datalog programs of arity two. Our\nempirical results demonstrate that these modules outperform general-purpose and\nspecialised systems by factors of 30x and 9x, respectively, when evaluating\nlarge programs with millions of facts. This boolean matrix approach\nsignificantly enhances the efficiency of datalog querying to support logic\nprogramming techniques.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a datalog query evaluation approach based on efficient and composable boolean matrix manipulation modules. We first define an overarching problem, Boolean Matrix Logic Programming (BMLP), which uses boolean matrices as an alternative computation to evaluate datalog programs. We develop two novel BMLP modules for bottom-up inferences on linear dyadic recursive datalog programs, and show how additional modules can extend this capability to compute both linear and non-linear recursive datalog programs of arity two. Our empirical results demonstrate that these modules outperform general-purpose and specialised systems by factors of 30x and 9x, respectively, when evaluating large programs with millions of facts. This boolean matrix approach significantly enhances the efficiency of datalog querying to support logic programming techniques.
布尔矩阵逻辑编程
我们描述了一种基于高效和可组合布尔矩阵操作模块的数据模型查询评估方法。我们首先定义了一个总体问题,即布尔矩阵逻辑编程(BMLP),它使用布尔矩阵作为评估数据模型程序的另一种计算方法。我们开发了两级 BMLP 模块,用于对线性二元递归数据模型程序进行自下而上的推理,并展示了附加模块如何将这一能力扩展到计算线性和非线性递归数据模型程序。实证结果表明,在评估具有数百万事实的大型程序时,这些模块的性能分别是通用系统和专用系统的 30 倍和 9 倍。这种布尔矩阵方法显著提高了数据模型查询的效率,从而支持逻辑编程技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信