Xin Gu, Diancheng Zhu, Shouxi Xu, Jing Hu, Miao Cheng, Tao Wei, Qianqian Liu, Ruirui Wang, Wanfei Li, Yun Ling, Bo Liu
{"title":"Photochemical Fabrication of Ag‐Modified Hierarchical Cu@Cu2O/CuO Nanocomposite Toward Room Temperature NO2 Detection","authors":"Xin Gu, Diancheng Zhu, Shouxi Xu, Jing Hu, Miao Cheng, Tao Wei, Qianqian Liu, Ruirui Wang, Wanfei Li, Yun Ling, Bo Liu","doi":"10.1002/pssr.202400223","DOIUrl":null,"url":null,"abstract":"Developing room temperature (RT) gas sensor based on metal oxide semiconductor material has long been challenging. Herein, a 1D hierarchical Ag‐modified Cu@Cu<jats:sub>2</jats:sub>O/CuO nanocomposite has been designed by low‐temperature etching self‐assembly combined with photochemical deposition method based on Cu nanowires (NWs). After a step of alkaline solution etching, the surface of Cu NWs is self‐assembled to form a hierarchical Cu@Cu<jats:sub>2</jats:sub>O/CuO, and then Ag nanoparticles are modified on its surface by photochemical deposition to obtain the desired material. All the preparation processes are carried out at RT and have good controllability. When applied as sensing material, the optimal Cu@Cu<jats:sub>2</jats:sub>O/CuO/Ag nanocomposite exhibits high response of ≈337.0 to 10 ppm NO<jats:sub>2</jats:sub> with excellent selectivity and fast response/recovery (60/400 s) at 25 °C. It is worth noting that such a strategy of loading Ag nanoparticles improves its gas sensitivity by about 42.4 times, and the resulting sensor shows good sensitivity and screening ability to NO<jats:sub>2</jats:sub> in the low concentration range. Finally, the nanostructure of the material is characterized systematically and the sensing mechanism is discussed.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"64 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400223","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing room temperature (RT) gas sensor based on metal oxide semiconductor material has long been challenging. Herein, a 1D hierarchical Ag‐modified Cu@Cu2O/CuO nanocomposite has been designed by low‐temperature etching self‐assembly combined with photochemical deposition method based on Cu nanowires (NWs). After a step of alkaline solution etching, the surface of Cu NWs is self‐assembled to form a hierarchical Cu@Cu2O/CuO, and then Ag nanoparticles are modified on its surface by photochemical deposition to obtain the desired material. All the preparation processes are carried out at RT and have good controllability. When applied as sensing material, the optimal Cu@Cu2O/CuO/Ag nanocomposite exhibits high response of ≈337.0 to 10 ppm NO2 with excellent selectivity and fast response/recovery (60/400 s) at 25 °C. It is worth noting that such a strategy of loading Ag nanoparticles improves its gas sensitivity by about 42.4 times, and the resulting sensor shows good sensitivity and screening ability to NO2 in the low concentration range. Finally, the nanostructure of the material is characterized systematically and the sensing mechanism is discussed.
期刊介绍:
Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers.
The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.