An anisotropic, brittle damage model for finite strains with a generic damage tensor regularization

Tim van der Velden, Stefanie Reese, Hagen Holthusen, Tim Brepols
{"title":"An anisotropic, brittle damage model for finite strains with a generic damage tensor regularization","authors":"Tim van der Velden, Stefanie Reese, Hagen Holthusen, Tim Brepols","doi":"arxiv-2408.06140","DOIUrl":null,"url":null,"abstract":"This paper establishes a universal framework for the nonlocal modeling of\nanisotropic damage at finite strains. By the combination of two recent works,\nthe new framework allows for the flexible incorporation of different\nestablished hyperelastic finite strain material formulations into anisotropic\ndamage whilst ensuring mesh-independent results by employing a generic set of\nmicromorphic gradient-extensions. First, the anisotropic damage model,\ngenerally satisfying the damage growth criterion, is investigated for the\nspecific choice of a Neo-Hookean material on a single element. Next, the model\nis applied with different gradient-extensions in structural simulations of an\nasymmetrically notched specimen to identify an efficient choice in the form of\na volumetric-deviatoric regularization. Thereafter, the universal framework,\nwhich is without loss of generality here specified for a Neo-Hookean material\nwith a volumetric-deviatoric gradient-extension, successfully serves for the\ncomplex simulation of a pressure loaded rotor blade. After acceptance of the manuscript, we make the codes of the material\nsubroutines accessible to the public at\nhttps://doi.org/10.5281/zenodo.11171630.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper establishes a universal framework for the nonlocal modeling of anisotropic damage at finite strains. By the combination of two recent works, the new framework allows for the flexible incorporation of different established hyperelastic finite strain material formulations into anisotropic damage whilst ensuring mesh-independent results by employing a generic set of micromorphic gradient-extensions. First, the anisotropic damage model, generally satisfying the damage growth criterion, is investigated for the specific choice of a Neo-Hookean material on a single element. Next, the model is applied with different gradient-extensions in structural simulations of an asymmetrically notched specimen to identify an efficient choice in the form of a volumetric-deviatoric regularization. Thereafter, the universal framework, which is without loss of generality here specified for a Neo-Hookean material with a volumetric-deviatoric gradient-extension, successfully serves for the complex simulation of a pressure loaded rotor blade. After acceptance of the manuscript, we make the codes of the material subroutines accessible to the public at https://doi.org/10.5281/zenodo.11171630.
采用通用损伤张量正则化的各向异性有限应变脆性损伤模型
本文为有限应变下各向异性损伤的非局部建模建立了一个通用框架。新框架结合了两篇最新研究成果,允许将不同的超弹性有限应变材料公式灵活地纳入各向异性损伤模型,同时通过采用一组通用的微形态梯度扩展,确保得到与网格无关的结果。首先,研究了在单个元素上特定选择新胡肯材料的各向异性损伤模型,该模型一般满足损伤增长准则。接着,在对非对称缺口试样进行结构模拟时,将该模型与不同的梯度扩展结合使用,以确定一种有效的体积-偏差正则化形式。此后,在不失一般性的前提下,我们针对具有体积偏差梯度伸长的新胡克式材料建立了通用框架,并成功地应用于压力加载转子叶片的复杂模拟。稿件被接受后,我们将在https://doi.org/10.5281/zenodo.11171630 上公开材料程序代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信