Immunity against Mycobacterium avium induced by DAR-901 and BCG

Getahun Abate, Krystal A Meza, Chase Colbert, Christopher S Eickhoff
{"title":"Immunity against Mycobacterium avium induced by DAR-901 and BCG","authors":"Getahun Abate, Krystal A Meza, Chase Colbert, Christopher S Eickhoff","doi":"10.1101/2024.09.03.611096","DOIUrl":null,"url":null,"abstract":"The prevalence of pulmonary nontuberculous mycobacteria (NTM) is increasing in Europe and North America. Most pulmonary NTM are caused by Mycobacterium avium complex (MAC). The treatment of pulmonary MAC is suboptimal with failure rates ranging from 30% to 40% and there is a need to develop new vaccines. In this study, we tested the ability of two whole cell vaccines, DAR-901 (heat killed M. obuense) and BCG (live attenuated M. bovis), to induce MAC cross-reactive immunity by first immunizing BALB/c mice and then performing IFN-gamma ELISPOT assay after overnight stimulation of splenocytes with live MAC. To study the ability of these vaccines to protect against MAC infection, BALB/c mice were vaccinated with DAR-901 (intradermal) or BCG (subcutaneous or intranasal) and challenged with aerosolized MAC 4 weeks later. Some mice vaccinated with BCG were treated with clarithromycin via gavage. Lung CFU in immunized mice and unvaccinated controls were quantified 4 weeks after infection. Our results showed that i) DAR-901 induced cross-reactive immunity to MAC and the level of MAC cross-reactive immunity was similar to the level of immunity induced by BCG, ii) DAR-901 and BCG protect against aerosol MAC, iii) mucosal BCG vaccination provided the best protection against MAC challenge, and iv) BCG vaccination did not interfere with anti-MAC activities of clarithromycin.","PeriodicalId":501182,"journal":{"name":"bioRxiv - Immunology","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.03.611096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The prevalence of pulmonary nontuberculous mycobacteria (NTM) is increasing in Europe and North America. Most pulmonary NTM are caused by Mycobacterium avium complex (MAC). The treatment of pulmonary MAC is suboptimal with failure rates ranging from 30% to 40% and there is a need to develop new vaccines. In this study, we tested the ability of two whole cell vaccines, DAR-901 (heat killed M. obuense) and BCG (live attenuated M. bovis), to induce MAC cross-reactive immunity by first immunizing BALB/c mice and then performing IFN-gamma ELISPOT assay after overnight stimulation of splenocytes with live MAC. To study the ability of these vaccines to protect against MAC infection, BALB/c mice were vaccinated with DAR-901 (intradermal) or BCG (subcutaneous or intranasal) and challenged with aerosolized MAC 4 weeks later. Some mice vaccinated with BCG were treated with clarithromycin via gavage. Lung CFU in immunized mice and unvaccinated controls were quantified 4 weeks after infection. Our results showed that i) DAR-901 induced cross-reactive immunity to MAC and the level of MAC cross-reactive immunity was similar to the level of immunity induced by BCG, ii) DAR-901 and BCG protect against aerosol MAC, iii) mucosal BCG vaccination provided the best protection against MAC challenge, and iv) BCG vaccination did not interfere with anti-MAC activities of clarithromycin.
DAR-901 和卡介苗诱导的分枝杆菌免疫力
在欧洲和北美,肺非结核分枝杆菌(NTM)的发病率正在上升。大多数肺非结核分枝杆菌由复合分枝杆菌(MAC)引起。肺部 MAC 的治疗效果并不理想,失败率在 30% 到 40% 之间,因此需要开发新的疫苗。在本研究中,我们测试了两种全细胞疫苗--DAR-901(热杀M. obuense)和卡介苗(减毒M. bovis活疫苗)--诱导MAC交叉反应免疫的能力,首先免疫BALB/c小鼠,然后用活MAC刺激脾细胞过夜后进行IFN-gamma ELISPOT检测。为了研究这些疫苗对 MAC 感染的保护能力,给 BALB/c 小鼠接种了 DAR-901(皮内)或卡介苗(皮下或鼻内),4 周后用气雾化 MAC 进行挑战。一些接种卡介苗的小鼠通过灌胃接受了克拉霉素治疗。感染 4 周后,对免疫小鼠和未接种对照组的肺部 CFU 进行量化。我们的研究结果表明:i)DAR-901 能诱导 MAC 交叉反应免疫,MAC 交叉反应免疫水平与卡介苗诱导的免疫水平相似;ii)DAR-901 和卡介苗都能抵御气溶胶 MAC;iii)卡介苗粘膜接种能为 MAC 挑战提供最佳保护;iv)卡介苗接种不会干扰克拉霉素的抗 MAC 活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信