Efficient FGM optimization with a novel design space and DeepONet

Piyush Agrawal, Ihina Mahajan, Shivam Choubey, Manish Agrawal
{"title":"Efficient FGM optimization with a novel design space and DeepONet","authors":"Piyush Agrawal, Ihina Mahajan, Shivam Choubey, Manish Agrawal","doi":"arxiv-2408.14203","DOIUrl":null,"url":null,"abstract":"This manuscript proposes an optimization framework to find the tailor-made\nfunctionally graded material (FGM) profiles for thermoelastic applications.\nThis optimization framework consists of (1) a random profile generation scheme,\n(2) deep learning (DL) based surrogate models for the prediction of thermal and\nstructural quantities, and (3) a genetic algorithm (GA). From the proposed\nrandom profile generation scheme, we strive for a generic design space that\ndoes not contain impractical designs, i.e., profiles with sharp gradations. We\nalso show that the power law is a strict subset of the proposed design space.\nWe use a dense neural network-based surrogate model for the prediction of\nmaximum stress, while the deep neural operator DeepONet is used for the\nprediction of the thermal field. The point-wise effective prediction of the\nthermal field enables us to implement the constraint that the metallic content\nof the FGM remains within a specified limit. The integration of the profile\ngeneration scheme and DL-based surrogate models with GA provides us with an\nefficient optimization scheme. The efficacy of the proposed framework is\ndemonstrated through various numerical examples.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript proposes an optimization framework to find the tailor-made functionally graded material (FGM) profiles for thermoelastic applications. This optimization framework consists of (1) a random profile generation scheme, (2) deep learning (DL) based surrogate models for the prediction of thermal and structural quantities, and (3) a genetic algorithm (GA). From the proposed random profile generation scheme, we strive for a generic design space that does not contain impractical designs, i.e., profiles with sharp gradations. We also show that the power law is a strict subset of the proposed design space. We use a dense neural network-based surrogate model for the prediction of maximum stress, while the deep neural operator DeepONet is used for the prediction of the thermal field. The point-wise effective prediction of the thermal field enables us to implement the constraint that the metallic content of the FGM remains within a specified limit. The integration of the profile generation scheme and DL-based surrogate models with GA provides us with an efficient optimization scheme. The efficacy of the proposed framework is demonstrated through various numerical examples.
利用新型设计空间和 DeepONet 高效优化烟气脱硫装置
该优化框架包括:(1)随机剖面生成方案;(2)基于深度学习(DL)的代用模型,用于预测热量和结构量;(3)遗传算法(GA)。根据所提出的随机轮廓生成方案,我们努力寻求一个通用的设计空间,该空间不包含不切实际的设计,即具有尖锐梯度的轮廓。我们使用基于密集神经网络的代用模型预测最大应力,同时使用深度神经算子 DeepONet 预测热场。通过对热场进行有效的点预测,我们可以实现 FGM 金属含量保持在指定范围内的约束。轮廓生成方案和基于 DL 的代用模型与 GA 的集成为我们提供了一个高效的优化方案。我们通过各种数值示例证明了所提出框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信