PatternPaint: Generating Layout Patterns Using Generative AI and Inpainting Techniques

Guanglei Zhou, Bhargav Korrapati, Gaurav Rajavendra Reddy, Jiang Hu, Yiran Chen, Dipto G. Thakurta
{"title":"PatternPaint: Generating Layout Patterns Using Generative AI and Inpainting Techniques","authors":"Guanglei Zhou, Bhargav Korrapati, Gaurav Rajavendra Reddy, Jiang Hu, Yiran Chen, Dipto G. Thakurta","doi":"arxiv-2409.01348","DOIUrl":null,"url":null,"abstract":"Generation of VLSI layout patterns is essential for a wide range of Design\nFor Manufacturability (DFM) studies. In this study, we investigate the\npotential of generative machine learning models for creating design rule legal\nmetal layout patterns. Our results demonstrate that the proposed model can\ngenerate legal patterns in complex design rule settings and achieves a high\ndiversity score. The designed system, with its flexible settings, supports both\npattern generation with localized changes, and design rule violation\ncorrection. Our methodology is validated on Intel 18A Process Design Kit (PDK)\nand can produce a wide range of DRC-compliant pattern libraries with only 20\nstarter patterns.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generation of VLSI layout patterns is essential for a wide range of Design For Manufacturability (DFM) studies. In this study, we investigate the potential of generative machine learning models for creating design rule legal metal layout patterns. Our results demonstrate that the proposed model can generate legal patterns in complex design rule settings and achieves a high diversity score. The designed system, with its flexible settings, supports both pattern generation with localized changes, and design rule violation correction. Our methodology is validated on Intel 18A Process Design Kit (PDK) and can produce a wide range of DRC-compliant pattern libraries with only 20 starter patterns.
PatternPaint:使用生成式人工智能和内绘技术生成布局图案
生成 VLSI 布局模式对于各种可制造性设计(DFM)研究至关重要。在本研究中,我们研究了生成式机器学习模型在创建设计规则合法金属布局模式方面的潜力。我们的研究结果表明,所提出的模型可以在复杂的设计规则设置中生成合法模式,并获得较高的多样性得分。所设计的系统具有灵活的设置,既支持生成局部变化的模式,也支持纠正违反设计规则的行为。我们的方法在英特尔 18A 处理器设计套件 (PDK) 上进行了验证,只需 20 个启动模式就能生成各种符合 DRC 标准的模式库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信