Convolutional Hierarchical Deep Learning Neural Networks-Tensor Decomposition (C-HiDeNN-TD): a scalable surrogate modeling approach for large-scale physical systems

Jiachen Guo, Chanwook Park, Xiaoyu Xie, Zhongsheng Sang, Gregory J. Wagner, Wing Kam Liu
{"title":"Convolutional Hierarchical Deep Learning Neural Networks-Tensor Decomposition (C-HiDeNN-TD): a scalable surrogate modeling approach for large-scale physical systems","authors":"Jiachen Guo, Chanwook Park, Xiaoyu Xie, Zhongsheng Sang, Gregory J. Wagner, Wing Kam Liu","doi":"arxiv-2409.00329","DOIUrl":null,"url":null,"abstract":"A common trend in simulation-driven engineering applications is the\never-increasing size and complexity of the problem, where classical numerical\nmethods typically suffer from significant computational time and huge memory\ncost. Methods based on artificial intelligence have been extensively\ninvestigated to accelerate partial differential equations (PDE) solvers using\ndata-driven surrogates. However, most data-driven surrogates require an\nextremely large amount of training data. In this paper, we propose the\nConvolutional Hierarchical Deep Learning Neural Network-Tensor Decomposition\n(C-HiDeNN-TD) method, which can directly obtain surrogate models by solving\nlarge-scale space-time PDE without generating any offline training data. We\ncompare the performance of the proposed method against classical numerical\nmethods for extremely large-scale systems.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A common trend in simulation-driven engineering applications is the ever-increasing size and complexity of the problem, where classical numerical methods typically suffer from significant computational time and huge memory cost. Methods based on artificial intelligence have been extensively investigated to accelerate partial differential equations (PDE) solvers using data-driven surrogates. However, most data-driven surrogates require an extremely large amount of training data. In this paper, we propose the Convolutional Hierarchical Deep Learning Neural Network-Tensor Decomposition (C-HiDeNN-TD) method, which can directly obtain surrogate models by solving large-scale space-time PDE without generating any offline training data. We compare the performance of the proposed method against classical numerical methods for extremely large-scale systems.
卷积分层深度学习神经网络--张量分解(C-HiDeNN-TD):大规模物理系统的可扩展代理建模方法
仿真驱动的工程应用的一个共同趋势是问题的规模和复杂性不断增加,而经典的数值方法通常需要耗费大量的计算时间和内存成本。人们已经广泛研究了基于人工智能的方法,以利用数据驱动代理加速偏微分方程(PDE)求解器。然而,大多数数据驱动代型需要极其大量的训练数据。本文提出了卷积分层深度学习神经网络-张量分解(C-HiDeNN-TD)方法,它可以通过求解大规模时空 PDE 直接获得代用模型,而无需生成任何离线训练数据。我们比较了所提方法与经典数值方法在超大规模系统中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信