{"title":"Primes of the form [nc] with Square-Free n","authors":"S. I. Dimitrov","doi":"10.1007/s11253-024-02318-7","DOIUrl":null,"url":null,"abstract":"<p>Let [·] be the floor function. We show that if 1 <<i> c </i>< <span>\\(\\frac{3849}{3334}\\)</span><i>,</i> then there exist infinitely many prime numbers of the form [<i>n</i><sup><i>c</i></sup>]<i>,</i> where <i>n</i> is square free.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02318-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let [·] be the floor function. We show that if 1 < c < \(\frac{3849}{3334}\), then there exist infinitely many prime numbers of the form [nc], where n is square free.