Turán-Type Inequalities for Generalized k-Bessel Functions

Pub Date : 2024-08-17 DOI:10.1007/s11253-024-02319-6
Hanaa M. Zayed
{"title":"Turán-Type Inequalities for Generalized k-Bessel Functions","authors":"Hanaa M. Zayed","doi":"10.1007/s11253-024-02319-6","DOIUrl":null,"url":null,"abstract":"<p>We propose an approach to the generalized k-Bessel function defined by</p><p><span>\\({\\text{U}}_{p,q,r}^{\\text{k}}\\left(z\\right)=\\sum_{n=0}^{\\infty }\\frac{{\\left(-r\\right)}^{n}}{{\\Gamma }_{k}\\left(nk+p+\\frac{q+1}{2}\\text{k}\\right)n!}{\\left(\\frac{z}{2}\\right)}^{2n+\\frac{p}{\\text{k}}},\\)</span></p><p>where k <i>&gt;</i> 0 and <i>p, q, r</i> ∈ <span>\\({\\mathbb{C}}\\)</span>. We discuss the uniform convergence of <span>\\({\\text{U}}_{p,q,r}^{\\text{k}}\\)</span> (<i>z</i>)<i>.</i> Moreover, we prove that the analyzed function is entire and determine its growth order and type. We also find its Weierstrass factorization, which turns out to be an infinite product uniformly convergent on a compact subset of the complex plane. The integral representation for <span>\\({\\text{U}}_{p,q,r}^{\\text{k}}\\)</span> (<i>z</i>) is found by using the representation for k-beta functions. We also prove that the specified function is a solution of a second-order differential equation that generalizes certain well-known differential equations for the classical Bessel functions. In addition, some interesting properties, such as recurrence and differential relations, are demonstrated. Some of these properties can be used to establish Turán-type inequalities for this function. Ultimately, we study the monotonicity and log-convexity of the normalized form of the modified k-Bessel function <span>\\({\\text{T}}_{p,q,1}^{\\text{k}}\\)</span> defined by <span>\\({\\text{T}}_{p,q,1}^{\\text{k}}\\)</span> (<i>z</i>) = <span>\\(i{-}^\\frac{p}{k}{\\text{U}}_{p,q,1}^{\\text{k}}\\)</span> (<i>iz</i>)<i>,</i> as well as the quotient of the modified k-Bessel function, exponential, and k-hypergeometric functions. In this case, the leading concept of the proofs comes from the monotonicity of the ratio of two power series.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02319-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an approach to the generalized k-Bessel function defined by

\({\text{U}}_{p,q,r}^{\text{k}}\left(z\right)=\sum_{n=0}^{\infty }\frac{{\left(-r\right)}^{n}}{{\Gamma }_{k}\left(nk+p+\frac{q+1}{2}\text{k}\right)n!}{\left(\frac{z}{2}\right)}^{2n+\frac{p}{\text{k}}},\)

where k > 0 and p, q, r\({\mathbb{C}}\). We discuss the uniform convergence of \({\text{U}}_{p,q,r}^{\text{k}}\) (z). Moreover, we prove that the analyzed function is entire and determine its growth order and type. We also find its Weierstrass factorization, which turns out to be an infinite product uniformly convergent on a compact subset of the complex plane. The integral representation for \({\text{U}}_{p,q,r}^{\text{k}}\) (z) is found by using the representation for k-beta functions. We also prove that the specified function is a solution of a second-order differential equation that generalizes certain well-known differential equations for the classical Bessel functions. In addition, some interesting properties, such as recurrence and differential relations, are demonstrated. Some of these properties can be used to establish Turán-type inequalities for this function. Ultimately, we study the monotonicity and log-convexity of the normalized form of the modified k-Bessel function \({\text{T}}_{p,q,1}^{\text{k}}\) defined by \({\text{T}}_{p,q,1}^{\text{k}}\) (z) = \(i{-}^\frac{p}{k}{\text{U}}_{p,q,1}^{\text{k}}\) (iz), as well as the quotient of the modified k-Bessel function, exponential, and k-hypergeometric functions. In this case, the leading concept of the proofs comes from the monotonicity of the ratio of two power series.

分享
查看原文
广义 k-贝塞尔函数的图兰式不等式
我们提出了一种广义 k-Bessel 函数的方法,其定义为:({\text{U}}_{p,q,r}^{text{k}}\left(z\right)=\sum_{n=0}^{\infty }\frac{left(-r\right)}^{n}}{Gamma }_{k}\left(nk+p+\frac{q+1}{2}\text{k}\right)n!{left(\frac{z}{2}\right)}^{2n+\frac{p}{text{k}}},()其中 k > 0 并且 p, q, r∈ \({\mathbb{C}}\})。我们讨论了 \({\text{U}}_{p,q,r}^{text{k}}\) (z) 的均匀收敛性。此外,我们还证明了所分析的函数是全函数,并确定了它的增长阶数和类型。我们还找到了它的魏尔斯特拉斯因式分解,结果发现它是复平面紧凑子集上均匀收敛的无穷积。通过使用 k-beta 函数的表示,我们找到了 \({\{U}}_{text{p,q,r}^{text{k}}\) (z) 的积分表示。我们还证明了指定函数是一个二阶微分方程的解,该方程概括了经典贝塞尔函数的某些著名微分方程。此外,我们还证明了一些有趣的性质,如递推和微分关系。其中一些性质可用于为该函数建立图兰型不等式。最后,我们研究了由 \({\text{T}}_{p,q,1}^{text{k}}\ 定义的修正 k-Bessel 函数 \({\text{T}}_{p,q,1}^{text{k}}) 的归一化形式的单调性和对数凸性、1}^{text{k}}\) (z) = \(i{-}^frac{p}{k}{text\{U}}_{p,q,1}^{text{k}}\) (iz),以及修正的 k-Bessel 函数、指数函数和 k- 超几何函数的商。在这种情况下,证明的主导概念来自两个幂级数之比的单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信