{"title":"Relationship Between the Bojanov–Naidenov Problem and the Kolmogorov-Type Inequalities","authors":"Volodymyr Kofanov","doi":"10.1007/s11253-024-02330-x","DOIUrl":null,"url":null,"abstract":"<p>It is shown that the Bojanov–Naidenov problem <span>\\({\\Vert {x}^{\\left(k\\right)}\\Vert }_{q, \\delta }\\)</span> → sup<i>, k</i> = 0<i>,</i> 1<i>, . . . , r −</i> 1<i>,</i> on the classes of functions <span>\\({\\Omega }_{p}^{r}\\left({A}_{0}, {A}_{r}\\right)\\)</span> := <span>\\(\\left\\{x \\in {L}_{\\infty }^{r}: {\\Vert {x}^{\\left(r\\right)}\\Vert }_{\\infty }\\le {A}_{r}, L{\\left(x\\right)}_{p}\\le {A}_{0}\\right\\},\\)</span> where <i>q ≥</i> 1 for <i>k ≥</i> 1 and <i>q ≥ p</i> for <i>k</i> = 0<i>,</i> is equivalent to the problem of finding the sharp constant <i>C</i> = <i>C</i>(<i>λ</i>) in the Kolmogorov-type inequality</p><p><span>\\({\\Vert {x}^{\\left(r\\right)}\\Vert }_{q,\\delta }\\le CL{\\left(x\\right)}_{p}^{\\alpha }{\\Vert {x}^{\\left(r\\right)}\\Vert }_{\\infty }^{1-\\alpha }, x\\in {\\Omega }_{p,\\lambda }^{r}, (1)\\)</span></p><p>where <span>\\(\\alpha =\\frac{r-k+1/q}{r+1/p},\\)</span> <span>\\({\\Vert x\\Vert }_{p,\\delta }\\)</span> := sup {<span>\\({\\Vert x\\Vert }_{{L}_{p}[a,b]}\\)</span>:a, b, ∈ <b>R</b>, 0 < b – a ≤ δ} δ > 0, <span>\\({\\Omega }_{p,\\lambda }^{r}\\)</span> := <span>\\(\\bigcup \\left\\{{\\Omega }_{p}^{r}\\left({A}_{0}, {A}_{r}\\right):{A}_{0}={A}_{r}L\\left(\\varphi \\lambda ,r\\right)p\\right\\},\\)</span> ⋋ > 0, φ⋋,r is a contraction of the ideal Euler spline of order r, and L<sub>(x)p</sub> : = sup {<span>\\({\\Vert x\\Vert }_{{L}_{p}[a,b]}:\\)</span> a, b, ∈ <b>R</b> |x(t)| > 0, t ∈ (a,b)}. In particular, we obtain a sharp inequality of the form (1) in the classes <span>\\({\\Omega }_{p,\\lambda }^{r},\\)</span> ⋋ > 0. We also prove the theorems on relationships for the Bojanov–Naidenov problems in the spaces of trigonometric polynomials and splines and establish the corresponding sharp Bernstein-type inequalities.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02330-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is shown that the Bojanov–Naidenov problem \({\Vert {x}^{\left(k\right)}\Vert }_{q, \delta }\) → sup, k = 0, 1, . . . , r − 1, on the classes of functions \({\Omega }_{p}^{r}\left({A}_{0}, {A}_{r}\right)\) := \(\left\{x \in {L}_{\infty }^{r}: {\Vert {x}^{\left(r\right)}\Vert }_{\infty }\le {A}_{r}, L{\left(x\right)}_{p}\le {A}_{0}\right\},\) where q ≥ 1 for k ≥ 1 and q ≥ p for k = 0, is equivalent to the problem of finding the sharp constant C = C(λ) in the Kolmogorov-type inequality
where \(\alpha =\frac{r-k+1/q}{r+1/p},\)\({\Vert x\Vert }_{p,\delta }\) := sup {\({\Vert x\Vert }_{{L}_{p}[a,b]}\):a, b, ∈ R, 0 < b – a ≤ δ} δ > 0, \({\Omega }_{p,\lambda }^{r}\) := \(\bigcup \left\{{\Omega }_{p}^{r}\left({A}_{0}, {A}_{r}\right):{A}_{0}={A}_{r}L\left(\varphi \lambda ,r\right)p\right\},\) ⋋ > 0, φ⋋,r is a contraction of the ideal Euler spline of order r, and L(x)p : = sup {\({\Vert x\Vert }_{{L}_{p}[a,b]}:\) a, b, ∈ R |x(t)| > 0, t ∈ (a,b)}. In particular, we obtain a sharp inequality of the form (1) in the classes \({\Omega }_{p,\lambda }^{r},\) ⋋ > 0. We also prove the theorems on relationships for the Bojanov–Naidenov problems in the spaces of trigonometric polynomials and splines and establish the corresponding sharp Bernstein-type inequalities.