The Norming Sets of $$\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)$$

Pub Date : 2024-09-06 DOI:10.1007/s11253-024-02329-4
Sung Guen Kim
{"title":"The Norming Sets of $$\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)$$","authors":"Sung Guen Kim","doi":"10.1007/s11253-024-02329-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>n</i> ∈ ℕ, <i>n</i> ≥ 2<i>.</i> An element (<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>) ∈ <i>E</i><sub><i>n</i></sub> is called a <i>norming point</i> of <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{n}E\\right)\\)</span> if ||<i>x</i><sub>1</sub>|| = <i>…</i> = ||<i>x</i><sub><i>n</i></sub>|| = 1 and <i>|T</i>(<i>x</i><sub>1</sub>,<i>…</i>,<i>x</i><sub><i>n</i></sub>)<i>|</i> = ||<i>T</i>||, where ℒ(<sup><i>n</i></sup><i>E</i>) denotes the space of all continuous <i>n</i>-linear forms on <i>E.</i> For <i>T</i> ∈ ℒ (<sup><i>n</i></sup><i>E</i>), we define\n</p><span>$$\\text{Norm}\\left(T\\right)=\\left\\{\\left({x}_{1},\\dots ,{x}_{n}\\right)\\in {E}^{n}:\\left({x}_{1},\\dots ,{x}_{n}\\right)\\text{ is a norming point of }T\\right\\}.$$</span><p>The set Norm(<i>T</i>) is called the <i>norming set</i> of <i>T.</i> For <i>m</i> ∈ ℕ<i>, m</i> ≥ 2, we characterize Norm(<i>T</i>) for any <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)\\)</span>, where <span>\\({l}_{1}^{n}={\\mathbb{R}}^{n}\\)</span> with the <i>l</i><sub>1</sub>-norm. As applications, we classify Norm(<i>T</i>) for every <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)\\)</span> with <i>n</i> = 2, 3 and <i>m</i> = 2<i>.</i></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02329-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let n ∈ ℕ, n ≥ 2. An element (x1,…,xn) ∈ En is called a norming point of T\(\mathcal{L}\left({}^{n}E\right)\) if ||x1|| = = ||xn|| = 1 and |T(x1,,xn)| = ||T||, where ℒ(nE) denotes the space of all continuous n-linear forms on E. For T ∈ ℒ (nE), we define

$$\text{Norm}\left(T\right)=\left\{\left({x}_{1},\dots ,{x}_{n}\right)\in {E}^{n}:\left({x}_{1},\dots ,{x}_{n}\right)\text{ is a norming point of }T\right\}.$$

The set Norm(T) is called the norming set of T. For m ∈ ℕ, m ≥ 2, we characterize Norm(T) for any T\(\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)\), where \({l}_{1}^{n}={\mathbb{R}}^{n}\) with the l1-norm. As applications, we classify Norm(T) for every T\(\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)\) with n = 2, 3 and m = 2.

分享
查看原文
$$\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)$$ 的规范集
设 n∈ ℕ, n ≥ 2。如果||x1|| = ... = ||xn|| = 1 且||T(x1,...,xn)| = ||T||,则元素 (x1,....,xn) ∈ En 称为 T∈ \(\mathcal{L}\left({}^{n}E\right)\) 的一个规范点,其中ℒ(nE) 表示 E 上所有连续 n 线性形式的空间。对于 T∈ ℒ (nE), 我们定义$$text{Norm}\left(T\right)=\left\left({x}_{1},\dots ,{x}_{n}\right)\in {E}^{n}:\left({x}_{1},\dots ,{x}_{n}\right)\text{ 是 }T\right} 的规范点。对于 m ∈ℕ,m ≥ 2,我们用 l1-norm 来描述任意 T ∈\(\mathcal{L}left({}^{m}{l}_{1}^{n}\right)\) 的 Norm(T) 的特征,其中 \({l}_{1}^{n}={/mathbb{R}}}^{n}/)。作为应用,我们为 n = 2, 3 和 m = 2 的每个 T∈ (\mathcal{L}left({}^{m}{l}_{1}^{n}\right))分类 Norm(T)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信