The Norming Sets of $$\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)$$

IF 0.5 4区 数学 Q3 MATHEMATICS
Sung Guen Kim
{"title":"The Norming Sets of $$\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)$$","authors":"Sung Guen Kim","doi":"10.1007/s11253-024-02329-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>n</i> ∈ ℕ, <i>n</i> ≥ 2<i>.</i> An element (<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>) ∈ <i>E</i><sub><i>n</i></sub> is called a <i>norming point</i> of <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{n}E\\right)\\)</span> if ||<i>x</i><sub>1</sub>|| = <i>…</i> = ||<i>x</i><sub><i>n</i></sub>|| = 1 and <i>|T</i>(<i>x</i><sub>1</sub>,<i>…</i>,<i>x</i><sub><i>n</i></sub>)<i>|</i> = ||<i>T</i>||, where ℒ(<sup><i>n</i></sup><i>E</i>) denotes the space of all continuous <i>n</i>-linear forms on <i>E.</i> For <i>T</i> ∈ ℒ (<sup><i>n</i></sup><i>E</i>), we define\n</p><span>$$\\text{Norm}\\left(T\\right)=\\left\\{\\left({x}_{1},\\dots ,{x}_{n}\\right)\\in {E}^{n}:\\left({x}_{1},\\dots ,{x}_{n}\\right)\\text{ is a norming point of }T\\right\\}.$$</span><p>The set Norm(<i>T</i>) is called the <i>norming set</i> of <i>T.</i> For <i>m</i> ∈ ℕ<i>, m</i> ≥ 2, we characterize Norm(<i>T</i>) for any <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)\\)</span>, where <span>\\({l}_{1}^{n}={\\mathbb{R}}^{n}\\)</span> with the <i>l</i><sub>1</sub>-norm. As applications, we classify Norm(<i>T</i>) for every <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)\\)</span> with <i>n</i> = 2, 3 and <i>m</i> = 2<i>.</i></p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"12 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02329-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let n ∈ ℕ, n ≥ 2. An element (x1,…,xn) ∈ En is called a norming point of T\(\mathcal{L}\left({}^{n}E\right)\) if ||x1|| = = ||xn|| = 1 and |T(x1,,xn)| = ||T||, where ℒ(nE) denotes the space of all continuous n-linear forms on E. For T ∈ ℒ (nE), we define

$$\text{Norm}\left(T\right)=\left\{\left({x}_{1},\dots ,{x}_{n}\right)\in {E}^{n}:\left({x}_{1},\dots ,{x}_{n}\right)\text{ is a norming point of }T\right\}.$$

The set Norm(T) is called the norming set of T. For m ∈ ℕ, m ≥ 2, we characterize Norm(T) for any T\(\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)\), where \({l}_{1}^{n}={\mathbb{R}}^{n}\) with the l1-norm. As applications, we classify Norm(T) for every T\(\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)\) with n = 2, 3 and m = 2.

$$\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)$$ 的规范集
设 n∈ ℕ, n ≥ 2。如果||x1|| = ... = ||xn|| = 1 且||T(x1,...,xn)| = ||T||,则元素 (x1,....,xn) ∈ En 称为 T∈ \(\mathcal{L}\left({}^{n}E\right)\) 的一个规范点,其中ℒ(nE) 表示 E 上所有连续 n 线性形式的空间。对于 T∈ ℒ (nE), 我们定义$$text{Norm}\left(T\right)=\left\left({x}_{1},\dots ,{x}_{n}\right)\in {E}^{n}:\left({x}_{1},\dots ,{x}_{n}\right)\text{ 是 }T\right} 的规范点。对于 m ∈ℕ,m ≥ 2,我们用 l1-norm 来描述任意 T ∈\(\mathcal{L}left({}^{m}{l}_{1}^{n}\right)\) 的 Norm(T) 的特征,其中 \({l}_{1}^{n}={/mathbb{R}}}^{n}/)。作为应用,我们为 n = 2, 3 和 m = 2 的每个 T∈ (\mathcal{L}left({}^{m}{l}_{1}^{n}\right))分类 Norm(T)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信