Sufficient Conditions and Radius Problems for the Silverman Class

Pub Date : 2024-09-06 DOI:10.1007/s11253-024-02331-w
S. Sivaprasad Kumar, Priyanka Goel
{"title":"Sufficient Conditions and Radius Problems for the Silverman Class","authors":"S. Sivaprasad Kumar, Priyanka Goel","doi":"10.1007/s11253-024-02331-w","DOIUrl":null,"url":null,"abstract":"<p>For 0 <i>&lt;</i> α ≤ 1 and <i>λ &gt;</i> 0<i>,</i> let</p><p><span>\\({G}_{\\lambda ,\\alpha }=\\left\\{f \\in A: \\left|\\frac{1-\\alpha +\\alpha zf^{\\prime\\prime}\\left(z\\right)/{f}^{{^{\\prime}}}\\left(z\\right)}{z{f}^{{^{\\prime}}}\\left(z\\right)/f\\left(z\\right)}-\\left(1-\\alpha \\right)\\right|&lt; \\lambda , z \\in {\\mathbb{D}}\\right\\}. (0.1)\\)</span></p><p>The general form of the Silverman class was introduced by Tuneski and Irmak [<i>Int. J. Math. Math. Sci.</i>, 2006, Article ID 38089 (2006)]. Our differential-inequality formulation is based on several sufficient conditions for this class. Further, we consider a class Ω given by</p><p><span>\\(\\Omega =\\left\\{f\\in A:\\left|z{f{^{\\prime}}}^{\\left(z\\right)}-f\\left(z\\right)\\right|&lt;\\frac{1}{2},z\\in {\\mathbb{D}}\\right\\}. (0.2)\\)</span></p><p>For these two classes, we establish inclusion relations involving some well-known subclasses of <i>S</i><sup><i>*</i></sup> and compute radius estimates featuring various pairings of these classes.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02331-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For 0 < α ≤ 1 and λ > 0, let

\({G}_{\lambda ,\alpha }=\left\{f \in A: \left|\frac{1-\alpha +\alpha zf^{\prime\prime}\left(z\right)/{f}^{{^{\prime}}}\left(z\right)}{z{f}^{{^{\prime}}}\left(z\right)/f\left(z\right)}-\left(1-\alpha \right)\right|< \lambda , z \in {\mathbb{D}}\right\}. (0.1)\)

The general form of the Silverman class was introduced by Tuneski and Irmak [Int. J. Math. Math. Sci., 2006, Article ID 38089 (2006)]. Our differential-inequality formulation is based on several sufficient conditions for this class. Further, we consider a class Ω given by

\(\Omega =\left\{f\in A:\left|z{f{^{\prime}}}^{\left(z\right)}-f\left(z\right)\right|<\frac{1}{2},z\in {\mathbb{D}}\right\}. (0.2)\)

For these two classes, we establish inclusion relations involving some well-known subclasses of S* and compute radius estimates featuring various pairings of these classes.

分享
查看原文
西尔弗曼类的充分条件和半径问题
For 0 < α ≤ 1 and λ > 0, let\({G}_{\lambda ,\alpha }=\left\{f \in A:\left||frac{1-\alpha +\alpha zf^{prime\prime}\left(z\right)/{f}^{^{\prime}}left(z\right)}{z{f}^{^{\prime}}left(z\right)/f\left(z\right)}-left(1-\alpha\right)\right|<;\lambda , z in {\mathbb{D}}\right\}.(0.1)\)The general form of the Silverman class was introduced by Tuneski and Irmak [Int. J. Math. Math. Sci.我们的微分不等式表述基于该类的几个充分条件。此外,我们还考虑了一个类 Ω,该类由以下条件给出:(\Omega =\left\{fin A:\left|z{f{^{\prime}}}^{left(z\right)}-f\left(z\right)\|<\frac{1}{2},z\in {\mathbb{D}}}\right\}.(0.2)\)For these two classes, we establish inclusion relations involving some well-known subclasses of S* and compute radius estimates featuring various pairings of these classes.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信