Ballistic deposition with memory: A new universality class of surface growth with a new scaling law

Ahmed Roman, Ruomin Zhu, Ilya Nemenman
{"title":"Ballistic deposition with memory: A new universality class of surface growth with a new scaling law","authors":"Ahmed Roman, Ruomin Zhu, Ilya Nemenman","doi":"10.1103/physrevresearch.6.l032053","DOIUrl":null,"url":null,"abstract":"Motivated by recent experimental studies in microbiology, we suggest modifying the classic ballistic deposition model of surface growth, where the memory of a deposition at a site induces more depositions at that site or its neighbors. By studying the statistics of surfaces in this model, we obtain three independent critical exponents: the growth exponent <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>β</mi><mo>=</mo><mn>5</mn><mo>/</mo><mn>4</mn></mrow></math>, the roughening exponent <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></math>, and the new (size) exponent <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>γ</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>. The model requires modifying the Family-Vicsek scaling, resulting in the dynamical exponent <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>z</mi><mo>=</mo><mfrac><mrow><mi>α</mi><mo>+</mo><mi>γ</mi></mrow><mi>β</mi></mfrac><mo>=</mo><mn>2</mn></mrow></math>. This modified scaling collapses the surface width vs time curves for various lattice sizes. This previously unobserved universality class of surface growth could describe the surface properties of a wide range of natural systems.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.l032053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by recent experimental studies in microbiology, we suggest modifying the classic ballistic deposition model of surface growth, where the memory of a deposition at a site induces more depositions at that site or its neighbors. By studying the statistics of surfaces in this model, we obtain three independent critical exponents: the growth exponent β=5/4, the roughening exponent α=2, and the new (size) exponent γ=1/2. The model requires modifying the Family-Vicsek scaling, resulting in the dynamical exponent z=α+γβ=2. This modified scaling collapses the surface width vs time curves for various lattice sizes. This previously unobserved universality class of surface growth could describe the surface properties of a wide range of natural systems.

Abstract Image

有记忆的弹道沉积:具有新缩放定律的新表面生长普遍性类别
受最近微生物学实验研究的启发,我们建议修改表面生长的经典弹道沉积模型,即在某一位置的沉积记忆会诱发该位置或其邻近位置的更多沉积。通过研究该模型中的表面统计,我们得到了三个独立的临界指数:生长指数 β=5/4、粗化指数 α=2 和新(大小)指数 γ=1/2。该模型需要修改科氏-维克塞克比例,从而导致动态指数 z=α+γβ=2。这种修改后的缩放使不同晶格尺寸的表面宽度与时间曲线发生折叠。这种以前未观察到的表面生长普遍性可以描述各种自然系统的表面特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信