Deep learning reveals key predictors of thermal conductivity in covalent organic frameworks

Prakash Thakolkaran, Yiwen Zheng, Yaqi Guo, Aniruddh Vashisth, Siddhant Kumar
{"title":"Deep learning reveals key predictors of thermal conductivity in covalent organic frameworks","authors":"Prakash Thakolkaran, Yiwen Zheng, Yaqi Guo, Aniruddh Vashisth, Siddhant Kumar","doi":"arxiv-2409.06457","DOIUrl":null,"url":null,"abstract":"The thermal conductivity of covalent organic frameworks (COFs), an emerging\nclass of nanoporous polymeric materials, is crucial for many applications, yet\nthe link between their structure and thermal properties is not well understood.\nFrom a dataset of over 2,400 COFs, we find that conventional features like\ndensity, pore size, void fraction, and surface area do not reliably predict\nthermal conductivity. To overcome this, we train an attention-based machine\nlearning model that accurately predicts thermal conductivities, even for\nstructures outside the training set. We then use the attention mechanism to\nunderstand why the model works. Surprisingly, dangling molecular branches\nemerge as key predictors of thermal conductivity, alongside conventional\ngeometric descriptors like density and pore size. Our findings show that COFs\nwith dangling functional groups exhibit lower thermal transfer capabilities\nthan otherwise. Molecular dynamics simulations confirm this, revealing\nsignificant mismatches in the vibrational density of states due to the presence\nof dangling branches.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal conductivity of covalent organic frameworks (COFs), an emerging class of nanoporous polymeric materials, is crucial for many applications, yet the link between their structure and thermal properties is not well understood. From a dataset of over 2,400 COFs, we find that conventional features like density, pore size, void fraction, and surface area do not reliably predict thermal conductivity. To overcome this, we train an attention-based machine learning model that accurately predicts thermal conductivities, even for structures outside the training set. We then use the attention mechanism to understand why the model works. Surprisingly, dangling molecular branches emerge as key predictors of thermal conductivity, alongside conventional geometric descriptors like density and pore size. Our findings show that COFs with dangling functional groups exhibit lower thermal transfer capabilities than otherwise. Molecular dynamics simulations confirm this, revealing significant mismatches in the vibrational density of states due to the presence of dangling branches.
深度学习揭示共价有机框架导热性的关键预测因素
共价有机框架(COFs)是一类新兴的纳米多孔聚合物材料,其热导率对许多应用都至关重要,但人们对其结构与热特性之间的联系还不甚了解。我们从一个包含 2,400 多种 COFs 的数据集中发现,传统的特征如密度、孔径、空隙率和表面积并不能可靠地预测热导率。为了克服这一问题,我们训练了一个基于注意力的机器学习模型,该模型可以准确预测热导率,即使是训练集之外的结构也不例外。然后,我们利用注意力机制来理解模型工作的原因。令人惊讶的是,悬垂分子支链与密度和孔径等传统几何描述指标一起,成为热导率的关键预测指标。我们的研究结果表明,具有悬垂官能团的 COF 的热传导能力低于其他情况。分子动力学模拟证实了这一点,并揭示了由于悬垂枝的存在而导致的振动状态密度的显著失配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信