Accelerating Large Language Model Training with Hybrid GPU-based Compression

Lang Xu, Quentin Anthony, Qinghua Zhou, Nawras Alnaasan, Radha R. Gulhane, Aamir Shafi, Hari Subramoni, Dhabaleswar K. Panda
{"title":"Accelerating Large Language Model Training with Hybrid GPU-based Compression","authors":"Lang Xu, Quentin Anthony, Qinghua Zhou, Nawras Alnaasan, Radha R. Gulhane, Aamir Shafi, Hari Subramoni, Dhabaleswar K. Panda","doi":"arxiv-2409.02423","DOIUrl":null,"url":null,"abstract":"Data Parallelism (DP), Tensor Parallelism (TP), and Pipeline Parallelism (PP)\nare the three strategies widely adopted to enable fast and efficient Large\nLanguage Model (LLM) training. However, these approaches rely on data-intensive\ncommunication routines to collect, aggregate, and re-distribute gradients,\nactivations, and other important model information, which pose significant\noverhead. Co-designed with GPU-based compression libraries, MPI libraries have\nbeen proven to reduce message size significantly, and leverage interconnect\nbandwidth, thus increasing training efficiency while maintaining acceptable\naccuracy. In this work, we investigate the efficacy of compression-assisted MPI\ncollectives under the context of distributed LLM training using 3D parallelism\nand ZeRO optimizations. We scaled up to 192 V100 GPUs on the Lassen\nsupercomputer. First, we enabled a na\\\"ive compression scheme across all\ncollectives and observed a 22.5\\% increase in TFLOPS per GPU and a 23.6\\%\nincrease in samples per second for GPT-NeoX-20B training. Nonetheless, such a\nstrategy ignores the sparsity discrepancy among messages communicated in each\nparallelism degree, thus introducing more errors and causing degradation in\ntraining loss. Therefore, we incorporated hybrid compression settings toward\neach parallel dimension and adjusted the compression intensity accordingly.\nGiven their low-rank structure (arXiv:2301.02654), we apply aggressive\ncompression on gradients when performing DP All-reduce. We adopt milder\ncompression to preserve precision while communicating activations, optimizer\nstates, and model parameters in TP and PP. Using the adjusted hybrid\ncompression scheme, we demonstrate a 17.3\\% increase in TFLOPS per GPU and a\n12.7\\% increase in samples per second while reaching baseline loss convergence.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"268 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data Parallelism (DP), Tensor Parallelism (TP), and Pipeline Parallelism (PP) are the three strategies widely adopted to enable fast and efficient Large Language Model (LLM) training. However, these approaches rely on data-intensive communication routines to collect, aggregate, and re-distribute gradients, activations, and other important model information, which pose significant overhead. Co-designed with GPU-based compression libraries, MPI libraries have been proven to reduce message size significantly, and leverage interconnect bandwidth, thus increasing training efficiency while maintaining acceptable accuracy. In this work, we investigate the efficacy of compression-assisted MPI collectives under the context of distributed LLM training using 3D parallelism and ZeRO optimizations. We scaled up to 192 V100 GPUs on the Lassen supercomputer. First, we enabled a na\"ive compression scheme across all collectives and observed a 22.5\% increase in TFLOPS per GPU and a 23.6\% increase in samples per second for GPT-NeoX-20B training. Nonetheless, such a strategy ignores the sparsity discrepancy among messages communicated in each parallelism degree, thus introducing more errors and causing degradation in training loss. Therefore, we incorporated hybrid compression settings toward each parallel dimension and adjusted the compression intensity accordingly. Given their low-rank structure (arXiv:2301.02654), we apply aggressive compression on gradients when performing DP All-reduce. We adopt milder compression to preserve precision while communicating activations, optimizer states, and model parameters in TP and PP. Using the adjusted hybrid compression scheme, we demonstrate a 17.3\% increase in TFLOPS per GPU and a 12.7\% increase in samples per second while reaching baseline loss convergence.
利用基于 GPU 的混合压缩技术加速大型语言模型训练
数据并行(DP)、张量并行(TP)和管道并行(PP)是为实现快速高效的大型语言模型(LLM)训练而广泛采用的三种策略。然而,这些方法都依赖于数据密集型通信例程来收集、汇总和重新分配梯度、激活度和其他重要的模型信息,从而造成了巨大的开销。与基于 GPU 的压缩库共同设计的 MPI 库已被证明能显著减少信息大小,并充分利用互连带宽,从而在提高训练效率的同时保持可接受的精度。在这项工作中,我们利用三维并行性和 ZeRO 优化,研究了在分布式 LLM 训练背景下压缩辅助 MPI 集合的功效。我们在 Lassens 超级计算机上扩展到 192 个 V100 GPU。首先,我们在所有GPU上启用了na(na "ive)压缩方案,并观察到在GPT-NeoX-20B训练中,每个GPU的TFLOPS增加了22.5%,每秒采样增加了23.6%。然而,这种策略忽略了在每个并行度上通信的信息之间的稀疏性差异,从而引入了更多错误并导致训练损耗下降。考虑到它们的低秩结构(arXiv:2301.02654),我们在执行 DP All-reduce 时对梯度进行了积极的压缩。我们在 TP 和 PP 中交流激活、优化器状态和模型参数时,采用了较温和的压缩以保持精度。使用调整后的混合压缩方案,我们证明每 GPU 的 TFLOPS 增加了 17.3%,每秒采样增加了 12.7%,同时达到了基线损耗收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信