Quantifying Liveness and Safety of Avalanche's Snowball

Quentin Kniep, Maxime Laval, Jakub Sliwinski, Roger Wattenhofer
{"title":"Quantifying Liveness and Safety of Avalanche's Snowball","authors":"Quentin Kniep, Maxime Laval, Jakub Sliwinski, Roger Wattenhofer","doi":"arxiv-2409.02217","DOIUrl":null,"url":null,"abstract":"This work examines the resilience properties of the Snowball and Avalanche\nprotocols that underlie the popular Avalanche blockchain. We experimentally\nquantify the resilience of Snowball using a simulation implemented in Rust,\nwhere the adversary strategically rebalances the network to delay termination. We show that in a network of $n$ nodes of equal stake, the adversary is able\nto break liveness when controlling $\\Omega(\\sqrt{n})$ nodes. Specifically, for\n$n = 2000$, a simple adversary controlling $5.2\\%$ of stake can successfully\nattack liveness. When the adversary is given additional information about the\nstate of the network (without any communication or other advantages), the stake\nneeded for a successful attack is as little as $2.8\\%$. We show that the\nadversary can break safety in time exponentially dependent on their stake, and\ninversely linearly related to the size of the network, e.g. in 265 rounds in\nexpectation when the adversary controls $25\\%$ of a network of 3000. We conclude that Snowball and Avalanche are akin to Byzantine reliable\nbroadcast protocols as opposed to consensus.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work examines the resilience properties of the Snowball and Avalanche protocols that underlie the popular Avalanche blockchain. We experimentally quantify the resilience of Snowball using a simulation implemented in Rust, where the adversary strategically rebalances the network to delay termination. We show that in a network of $n$ nodes of equal stake, the adversary is able to break liveness when controlling $\Omega(\sqrt{n})$ nodes. Specifically, for $n = 2000$, a simple adversary controlling $5.2\%$ of stake can successfully attack liveness. When the adversary is given additional information about the state of the network (without any communication or other advantages), the stake needed for a successful attack is as little as $2.8\%$. We show that the adversary can break safety in time exponentially dependent on their stake, and inversely linearly related to the size of the network, e.g. in 265 rounds in expectation when the adversary controls $25\%$ of a network of 3000. We conclude that Snowball and Avalanche are akin to Byzantine reliable broadcast protocols as opposed to consensus.
量化雪崩雪球的有效性和安全性
这项工作研究了作为流行的雪崩区块链基础的 Snowball 和 Avalancheprotocol 的弹性特性。我们使用 Rust 实现的模拟对 Snowball 的弹性进行了实验性量化,在该模拟中,对手策略性地重新平衡网络以延迟终止。我们的研究表明,在一个由 $n$ 节点组成的等价网络中,当对手控制 $\Omega(\sqrt{n})$ 节点时,就能打破有效性。具体来说,对于 $n = 2000$,一个简单的对手控制着 5.2\%$ 的赌注,就能成功攻击有效性。当对手获得关于网络状态的额外信息时(没有任何通信或其他优势),成功攻击所需的赌注仅为 2.8 美元。我们的研究表明,对手可以在与他们的赌注成指数关系的时间内打破安全,而与网络规模成反线性关系,例如,当对手控制了 3000 个网络中的 25 美元/%$时,只需 265 轮即可。我们的结论是,与共识相比,"雪球 "和 "雪崩 "类似于拜占庭可靠广播协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信