Measuring Trotter error and its application to precision-guaranteed Hamiltonian simulations

Tatsuhiko N. Ikeda, Hideki Kono, Keisuke Fujii
{"title":"Measuring Trotter error and its application to precision-guaranteed Hamiltonian simulations","authors":"Tatsuhiko N. Ikeda, Hideki Kono, Keisuke Fujii","doi":"10.1103/physrevresearch.6.033285","DOIUrl":null,"url":null,"abstract":"Trotterization is the most common and convenient approximation method for Hamiltonian simulations on digital quantum computers, but estimating its error accurately is computationally difficult for large quantum systems. Here, we develop a method for measuring the Trotter error without ancillary qubits on quantum circuits by combining the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>m</mi><mtext>th</mtext></mrow></math>- and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>n</mi><mtext>th</mtext></mrow></math>-order (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>m</mi><mo>&lt;</mo><mi>n</mi></mrow></math>) Trotterizations rather than consulting with mathematical error bounds. Using this method, we make Trotterization precision guaranteed, developing an algorithm named Trotter<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></math>, in which the Trotter error at each time step is within an error tolerance <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ε</mi></math> preset for our purpose. Trotter<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></math> is applicable to both time-independent and -dependent Hamiltonians, and it adaptively chooses almost the largest step size <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>δ</mi><mi>t</mi></mrow></math>, which keeps quantum circuits shallowest, within the error tolerance. Benchmarking it in a quantum spin chain, we find the adaptively chosen <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>δ</mi><mi>t</mi></mrow></math> to be about 10 times larger than that inferred from known upper bounds of Trotter errors.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Trotterization is the most common and convenient approximation method for Hamiltonian simulations on digital quantum computers, but estimating its error accurately is computationally difficult for large quantum systems. Here, we develop a method for measuring the Trotter error without ancillary qubits on quantum circuits by combining the mth- and nth-order (m<n) Trotterizations rather than consulting with mathematical error bounds. Using this method, we make Trotterization precision guaranteed, developing an algorithm named Trotter(m,n), in which the Trotter error at each time step is within an error tolerance ε preset for our purpose. Trotter(m,n) is applicable to both time-independent and -dependent Hamiltonians, and it adaptively chooses almost the largest step size δt, which keeps quantum circuits shallowest, within the error tolerance. Benchmarking it in a quantum spin chain, we find the adaptively chosen δt to be about 10 times larger than that inferred from known upper bounds of Trotter errors.

Abstract Image

测量特罗特误差及其在精确保证哈密顿模拟中的应用
特罗特化是数字量子计算机上哈密顿模拟最常用、最方便的近似方法,但对于大型量子系统来说,准确估算其误差在计算上非常困难。在这里,我们开发了一种测量量子电路上无辅助量子比特的特罗特误差的方法,即通过结合 mth 阶和 nth 阶 (m<n) 特罗特化,而不是参考数学误差边界。利用这种方法,我们保证了特罗特化的精度,开发了一种名为 Trotter(m,n) 的算法,其中每个时间步的特罗特误差都在为我们的目的预设的误差容限 ε 范围内。Trotter(m,n) 既适用于与时间无关的哈密顿,也适用于与时间无关的哈密顿,它能在误差容限内自适应地选择几乎最大的步长δt,从而使量子回路保持最浅。以量子自旋链为基准,我们发现自适应选择的 δt 比根据已知的特罗特误差上限推断的δt 大 10 倍左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信