Thermal hysteresis in wettability and the Leidenfrost phenomenon

Yutaku Kita, Kensuke Kida, Takaaki Ariyoshi, Sumitomo Hidaka, Masamichi Kohno, Yasuyuki Takata
{"title":"Thermal hysteresis in wettability and the Leidenfrost phenomenon","authors":"Yutaku Kita, Kensuke Kida, Takaaki Ariyoshi, Sumitomo Hidaka, Masamichi Kohno, Yasuyuki Takata","doi":"10.1103/physrevresearch.6.033287","DOIUrl":null,"url":null,"abstract":"The Leidenfrost temperature (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>L</mi></msub></math>), at which the liquid drop lifetime peaks on a superheated surface, is believed to be wettability dependent. Here, we show that the wettability effect on <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>L</mi></msub></math> is subject to the history of the surface temperature. Observing a water drop evaporating on a polished stainless-steel surface heated from 100 to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>400</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi></mrow></math> in argon gas, we find <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>T</mi><mi>L</mi></msub><mo>≈</mo><mn>265</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi></mrow></math>. We then repeat the experiment along decreasing temperature and find a <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>L</mi></msub></math> increase by 10 K, i.e., <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>T</mi><mi>L</mi></msub><mo>≈</mo><mn>275</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi></mrow></math>. This thermal hysteresis is due to a reduced contact angle during heating. Once hydrophilized, the hysteresis disappears until the contact angle recovers. Similar observations are made in the air where oxidation is possible.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Leidenfrost temperature (TL), at which the liquid drop lifetime peaks on a superheated surface, is believed to be wettability dependent. Here, we show that the wettability effect on TL is subject to the history of the surface temperature. Observing a water drop evaporating on a polished stainless-steel surface heated from 100 to 400C in argon gas, we find TL265C. We then repeat the experiment along decreasing temperature and find a TL increase by 10 K, i.e., TL275C. This thermal hysteresis is due to a reduced contact angle during heating. Once hydrophilized, the hysteresis disappears until the contact angle recovers. Similar observations are made in the air where oxidation is possible.

Abstract Image

润湿性的热滞后和莱顿弗罗斯特现象
莱顿弗罗斯特温度(TL)是过热表面上液滴寿命达到峰值的温度,它被认为与润湿性有关。在这里,我们证明了润湿性对 TL 的影响受表面温度历史的影响。通过观察在氩气中加热 100 至 400∘C 的抛光不锈钢表面上蒸发的水滴,我们发现 TL≈265∘C 。然后,我们沿温度递减方向重复实验,发现 TL 增加了 10 K,即 TL≈275∘C 。这种热滞后现象是由于加热过程中接触角减小所致。一旦亲水,滞后现象就会消失,直到接触角恢复。在可能发生氧化的空气中也能观察到类似现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信