Bruno Focassio, Gabriel R. Schleder, Adalberto Fazzio, Rodrigo B. Capaz, Pedro V. Lopes, Jaime Ferreira, Carsten Enderlein, Marcello B. Silva Neto
{"title":"Magnetic control of Weyl nodes and wave packets in three-dimensional warped semimetals","authors":"Bruno Focassio, Gabriel R. Schleder, Adalberto Fazzio, Rodrigo B. Capaz, Pedro V. Lopes, Jaime Ferreira, Carsten Enderlein, Marcello B. Silva Neto","doi":"10.1103/physrevresearch.6.033289","DOIUrl":null,"url":null,"abstract":"We investigate the topological phase transitions driven by band warping, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi></math>, and a transverse magnetic field, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>B</mi></math>, for three-dimensional Weyl semimetals. First, we use the Chern number as a mathematical tool to derive the topological <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>λ</mi><mo>×</mo><mi>B</mi></mrow></math> phase diagram. Next, we associate each of the topological sectors to a given angular momentum state of a rotating wave packet. Then we show how the position of the Weyl nodes can be manipulated by a transverse external magnetic field that ultimately quenches the wave packet rotation, first partially and then completely, thus resulting in a sequence of field-induced topological phase transitions. Finally, we calculate the current-induced magnetization and the anomalous Hall conductivity of a prototypical warped Weyl material. Both observables reflect the topological transitions associated with the wave packet rotation and can help to identify the elusive 3D quantum anomalous Hall effect in three-dimensional, warped Weyl materials.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":"268 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the topological phase transitions driven by band warping, , and a transverse magnetic field, , for three-dimensional Weyl semimetals. First, we use the Chern number as a mathematical tool to derive the topological phase diagram. Next, we associate each of the topological sectors to a given angular momentum state of a rotating wave packet. Then we show how the position of the Weyl nodes can be manipulated by a transverse external magnetic field that ultimately quenches the wave packet rotation, first partially and then completely, thus resulting in a sequence of field-induced topological phase transitions. Finally, we calculate the current-induced magnetization and the anomalous Hall conductivity of a prototypical warped Weyl material. Both observables reflect the topological transitions associated with the wave packet rotation and can help to identify the elusive 3D quantum anomalous Hall effect in three-dimensional, warped Weyl materials.