Quantum counterpart of equipartition theorem: A Möbius inversion approach

Xin-Hai Tong, Yao Wang
{"title":"Quantum counterpart of equipartition theorem: A Möbius inversion approach","authors":"Xin-Hai Tong, Yao Wang","doi":"10.1103/physrevresearch.6.l032064","DOIUrl":null,"url":null,"abstract":"The equipartition theorem is crucial in classical statistical physics, and recent studies have revealed its quantum counterpart for specific systems. This raises the question: does a quantum counterpart of the equipartition theorem exist for any given system, and if so, what is its concrete form? In this Letter, we employ the Möbius inversion approach to address these questions, providing a criterion to determine whether a system adheres to the quantum counterpart of the equipartition theorem. If it does, the corresponding distribution function can be readily derived. Furthermore, we construct the fermionic version of the criterion in a manner analogous to the bosonic case.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.l032064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The equipartition theorem is crucial in classical statistical physics, and recent studies have revealed its quantum counterpart for specific systems. This raises the question: does a quantum counterpart of the equipartition theorem exist for any given system, and if so, what is its concrete form? In this Letter, we employ the Möbius inversion approach to address these questions, providing a criterion to determine whether a system adheres to the quantum counterpart of the equipartition theorem. If it does, the corresponding distribution function can be readily derived. Furthermore, we construct the fermionic version of the criterion in a manner analogous to the bosonic case.

Abstract Image

等分定理的量子对应物:莫比乌斯反演法
等分定理在经典统计物理学中至关重要,最近的研究揭示了特定系统的量子对应定理。这就提出了一个问题:对于任何给定系统,是否存在等分定理的量子对应定理?在这封信中,我们采用莫比乌斯反演法来解决这些问题,提供了一个标准来确定一个系统是否遵守等分定理的量子对应定理。如果符合,就可以很容易地推导出相应的分布函数。此外,我们还以类似于玻色子的方式构建了该准则的费米子版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信