Optimizing the Weather Research and Forecasting Model with OpenMP Offload and Codee

ChayanonNamo, WichitrnithedHelen, Woo-Sun-YangHelen, YunHelen, He, Brad Richardson, Koichi Sakaguchi, Manuel Arenaz, William I. Gustafson Jr., Jacob Shpund, Ulises Costi Blanco, Alvaro Goldar Dieste
{"title":"Optimizing the Weather Research and Forecasting Model with OpenMP Offload and Codee","authors":"ChayanonNamo, WichitrnithedHelen, Woo-Sun-YangHelen, YunHelen, He, Brad Richardson, Koichi Sakaguchi, Manuel Arenaz, William I. Gustafson Jr., Jacob Shpund, Ulises Costi Blanco, Alvaro Goldar Dieste","doi":"arxiv-2409.07232","DOIUrl":null,"url":null,"abstract":"Currently, the Weather Research and Forecasting model (WRF) utilizes shared\nmemory (OpenMP) and distributed memory (MPI) parallelisms. To take advantage of\nGPU resources on the Perlmutter supercomputer at NERSC, we port parts of the\ncomputationally expensive routines of the Fast Spectral Bin Microphysics (FSBM)\nmicrophysical scheme to NVIDIA GPUs using OpenMP device offloading directives.\nTo facilitate this process, we explore a workflow for optimization which uses\nboth runtime profilers and a static code inspection tool Codee to refactor the\nsubroutine. We observe a 2.08x overall speedup for the CONUS-12km thunderstorm\ntest case.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the Weather Research and Forecasting model (WRF) utilizes shared memory (OpenMP) and distributed memory (MPI) parallelisms. To take advantage of GPU resources on the Perlmutter supercomputer at NERSC, we port parts of the computationally expensive routines of the Fast Spectral Bin Microphysics (FSBM) microphysical scheme to NVIDIA GPUs using OpenMP device offloading directives. To facilitate this process, we explore a workflow for optimization which uses both runtime profilers and a static code inspection tool Codee to refactor the subroutine. We observe a 2.08x overall speedup for the CONUS-12km thunderstorm test case.
利用 OpenMP 卸载和 Codee 优化天气研究和预测模型
目前,天气研究与预报模型(WRF)使用共享内存(OpenMP)和分布式内存(MPI)并行。为了充分利用 NERSC Perlmutter 超级计算机上的 GPU 资源,我们使用 OpenMP 设备卸载指令,将快速光谱斌微物理(FSBM)微物理方案中部分计算成本较高的例程移植到英伟达™(NVIDIA®)GPU 上。为了促进这一过程,我们探索了一种优化工作流程,该流程同时使用运行时剖析器和静态代码检查工具 Codee 来重构子例程。在 CONUS-12km 雷暴测试案例中,我们观察到整体速度提高了 2.08 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信