Scalable, reproducible, and cost-effective processing of large-scale medical imaging datasets

Michael E. Kim, Karthik Ramadass, Chenyu Gao, Praitayini Kanakaraj, Nancy R. Newlin, Gaurav Rudravaram, Kurt G. Schilling, Blake E. Dewey, Derek Archer, Timothy J. Hohman, Zhiyuan Li, Shunxing Bao, Bennett A. Landman, Nazirah Mohd Khairi
{"title":"Scalable, reproducible, and cost-effective processing of large-scale medical imaging datasets","authors":"Michael E. Kim, Karthik Ramadass, Chenyu Gao, Praitayini Kanakaraj, Nancy R. Newlin, Gaurav Rudravaram, Kurt G. Schilling, Blake E. Dewey, Derek Archer, Timothy J. Hohman, Zhiyuan Li, Shunxing Bao, Bennett A. Landman, Nazirah Mohd Khairi","doi":"arxiv-2408.14611","DOIUrl":null,"url":null,"abstract":"Curating, processing, and combining large-scale medical imaging datasets from\nnational studies is a non-trivial task due to the intense computation and data\nthroughput required, variability of acquired data, and associated financial\noverhead. Existing platforms or tools for large-scale data curation,\nprocessing, and storage have difficulty achieving a viable cost-to-scale ratio\nof computation speed for research purposes, either being too slow or too\nexpensive. Additionally, management and consistency of processing large data in\na team-driven manner is a non-trivial task. We design a BIDS-compliant method\nfor an efficient and robust data processing pipeline of large-scale\ndiffusion-weighted and T1-weighted MRI data compatible with low-cost,\nhigh-efficiency computing systems. Our method accomplishes automated querying\nof data available for processing and process running in a consistent and\nreproducible manner that has long-term stability, while using heterogenous\nlow-cost computational resources and storage systems for efficient processing\nand data transfer. We demonstrate how our organizational structure permits\nefficiency in a semi-automated data processing pipeline and show how our method\nis comparable in processing time to cloud-based computation while being almost\n20 times more cost-effective. Our design allows for fast data throughput speeds\nand low latency to reduce the time for data transfer between storage servers\nand computation servers, achieving an average of 0.60 Gb/s compared to 0.33\nGb/s for using cloud-based processing methods. The design of our workflow\nengine permits quick process running while maintaining flexibility to adapt to\nnewly acquired data.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"268 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Curating, processing, and combining large-scale medical imaging datasets from national studies is a non-trivial task due to the intense computation and data throughput required, variability of acquired data, and associated financial overhead. Existing platforms or tools for large-scale data curation, processing, and storage have difficulty achieving a viable cost-to-scale ratio of computation speed for research purposes, either being too slow or too expensive. Additionally, management and consistency of processing large data in a team-driven manner is a non-trivial task. We design a BIDS-compliant method for an efficient and robust data processing pipeline of large-scale diffusion-weighted and T1-weighted MRI data compatible with low-cost, high-efficiency computing systems. Our method accomplishes automated querying of data available for processing and process running in a consistent and reproducible manner that has long-term stability, while using heterogenous low-cost computational resources and storage systems for efficient processing and data transfer. We demonstrate how our organizational structure permits efficiency in a semi-automated data processing pipeline and show how our method is comparable in processing time to cloud-based computation while being almost 20 times more cost-effective. Our design allows for fast data throughput speeds and low latency to reduce the time for data transfer between storage servers and computation servers, achieving an average of 0.60 Gb/s compared to 0.33 Gb/s for using cloud-based processing methods. The design of our workflow engine permits quick process running while maintaining flexibility to adapt to newly acquired data.
可扩展、可重现、经济高效地处理大规模医学成像数据集
由于需要高强度的计算和数据吞吐量、所获数据的多变性以及相关的财务费用,整理、处理和合并来自国家研究的大规模医学影像数据集是一项非同小可的任务。用于大规模数据整理、处理和存储的现有平台或工具难以达到用于研究目的的可行的计算速度成本比,要么太慢,要么太贵。此外,以团队驱动的方式处理大型数据的管理和一致性也是一项非同小可的任务。我们设计了一种符合 BIDS 标准的方法,用于高效、稳健地处理大规模扩散加权和 T1 加权磁共振成像数据,并与低成本、高效率的计算系统兼容。我们的方法可以自动查询可供处理的数据,并以一致、可重复的方式运行处理过程,具有长期稳定性,同时利用异质低成本计算资源和存储系统进行高效处理和数据传输。我们展示了我们的组织结构如何在半自动化数据处理管道中实现高效,并展示了我们的方法如何在处理时间上与基于云的计算相媲美,而成本效益却高出近 20 倍。我们的设计实现了快速的数据吞吐速度和低延迟,从而缩短了存储服务器和计算服务器之间的数据传输时间,平均传输速度达到 0.60Gb/s,而使用基于云的处理方法平均传输速度为 0.33Gb/s。我们的工作流引擎设计允许快速运行流程,同时保持灵活性,以适应不断获取的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信