Enhancing quantum state tomography via resource-efficient attention-based neural networks

Adriano Macarone Palmieri, Guillem Müller-Rigat, Anubhav Kumar Srivastava, Maciej Lewenstein, Grzegorz Rajchel-Mieldzioć, Marcin Płodzień
{"title":"Enhancing quantum state tomography via resource-efficient attention-based neural networks","authors":"Adriano Macarone Palmieri, Guillem Müller-Rigat, Anubhav Kumar Srivastava, Maciej Lewenstein, Grzegorz Rajchel-Mieldzioć, Marcin Płodzień","doi":"10.1103/physrevresearch.6.033248","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for denoising experimental density matrices that combines standard quantum state tomography with an attention-based neural network architecture. The algorithm learns the noise from the data itself, without <i>a priori</i> knowledge of its sources. Firstly, we show how the proposed protocol can improve the averaged fidelity of reconstruction over linear inversion and maximum likelihood estimation in the finite-statistics regime, reducing at least by an order of magnitude the amount of necessary training data. Next, we demonstrate its use for out-of-distribution data in realistic scenarios. In particular, we consider squeezed states of few spins in the presence of depolarizing noise and measurement/calibration errors and certify its metrologically useful entanglement content. The protocol introduced here targets experiments involving few degrees of freedom and afflicted by a significant amount of unspecified noise. These include NISQ devices and platforms such as trapped ions or photonic qudits.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a method for denoising experimental density matrices that combines standard quantum state tomography with an attention-based neural network architecture. The algorithm learns the noise from the data itself, without a priori knowledge of its sources. Firstly, we show how the proposed protocol can improve the averaged fidelity of reconstruction over linear inversion and maximum likelihood estimation in the finite-statistics regime, reducing at least by an order of magnitude the amount of necessary training data. Next, we demonstrate its use for out-of-distribution data in realistic scenarios. In particular, we consider squeezed states of few spins in the presence of depolarizing noise and measurement/calibration errors and certify its metrologically useful entanglement content. The protocol introduced here targets experiments involving few degrees of freedom and afflicted by a significant amount of unspecified noise. These include NISQ devices and platforms such as trapped ions or photonic qudits.

Abstract Image

通过资源效率型注意力神经网络增强量子态层析成像技术
在本文中,我们提出了一种对实验密度矩阵去噪的方法,它将标准量子态层析成像与基于注意力的神经网络架构相结合。该算法从数据本身学习噪声,而无需先验地了解其来源。首先,我们展示了在有限统计机制下,与线性反演和最大似然估计相比,所提出的协议如何提高重建的平均保真度,将所需的训练数据量至少减少一个数量级。接下来,我们演示了该方法在现实场景中对分布外数据的应用。特别是,我们考虑了在存在去极化噪声和测量/校准误差的情况下少数自旋的挤压态,并证明了其在计量学上有用的纠缠内容。这里介绍的协议针对的是涉及少数自由度并受到大量未指定噪声影响的实验。这些实验包括 NISQ 设备和平台,如被困离子或光子量子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信