Demo: FedCampus: A Real-world Privacy-preserving Mobile Application for Smart Campus via Federated Learning & Analytics

Jiaxiang Geng, Beilong Tang, Boyan Zhang, Jiaqi Shao, Bing Luo
{"title":"Demo: FedCampus: A Real-world Privacy-preserving Mobile Application for Smart Campus via Federated Learning & Analytics","authors":"Jiaxiang Geng, Beilong Tang, Boyan Zhang, Jiaqi Shao, Bing Luo","doi":"arxiv-2409.00327","DOIUrl":null,"url":null,"abstract":"In this demo, we introduce FedCampus, a privacy-preserving mobile application\nfor smart \\underline{campus} with \\underline{fed}erated learning (FL) and\nfederated analytics (FA). FedCampus enables cross-platform on-device FL/FA for\nboth iOS and Android, supporting continuously models and algorithms deployment\n(MLOps). Our app integrates privacy-preserving processed data via differential\nprivacy (DP) from smartwatches, where the processed parameters are used for\nFL/FA through the FedCampus backend platform. We distributed 100 smartwatches\nto volunteers at Duke Kunshan University and have successfully completed a\nseries of smart campus tasks featuring capabilities such as sleep tracking,\nphysical activity monitoring, personalized recommendations, and heavy hitters.\nOur project is opensourced at https://github.com/FedCampus/FedCampus_Flutter.\nSee the FedCampus video at https://youtu.be/k5iu46IjA38.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this demo, we introduce FedCampus, a privacy-preserving mobile application for smart \underline{campus} with \underline{fed}erated learning (FL) and federated analytics (FA). FedCampus enables cross-platform on-device FL/FA for both iOS and Android, supporting continuously models and algorithms deployment (MLOps). Our app integrates privacy-preserving processed data via differential privacy (DP) from smartwatches, where the processed parameters are used for FL/FA through the FedCampus backend platform. We distributed 100 smartwatches to volunteers at Duke Kunshan University and have successfully completed a series of smart campus tasks featuring capabilities such as sleep tracking, physical activity monitoring, personalized recommendations, and heavy hitters. Our project is opensourced at https://github.com/FedCampus/FedCampus_Flutter. See the FedCampus video at https://youtu.be/k5iu46IjA38.
演示:FedCampus:通过联合学习与分析为智慧校园提供的真实世界隐私保护移动应用程序
在本演示中,我们将介绍 FedCampus,这是一款保护隐私的移动应用程序,用于智能联合学习(FL)和联合分析(FA)。FedCampus 可在 iOS 和 Android 设备上实现跨平台 FL/FA,支持连续模型和算法部署(MLOps)。我们的应用程序通过智能手表的差分隐私(DP)集成了隐私保护处理数据,处理后的参数通过 FedCampus 后端平台用于 FL/FA。我们向昆山杜克大学的志愿者分发了 100 块智能手表,并成功完成了一系列智慧校园任务,包括睡眠跟踪、体力活动监测、个性化推荐和重击等功能。我们的项目开源于 https://github.com/FedCampus/FedCampus_Flutter.See,FedCampus 视频开源于 https://youtu.be/k5iu46IjA38。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信