Viscous influences on impulsively generated focused jets

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Xianggang Cheng, Xiao-Peng Chen, Hang Ding, Chun-Yu Zhang, Haibao Hu, Laibing Jia
{"title":"Viscous influences on impulsively generated focused jets","authors":"Xianggang Cheng, Xiao-Peng Chen, Hang Ding, Chun-Yu Zhang, Haibao Hu, Laibing Jia","doi":"10.1103/physrevfluids.9.l082001","DOIUrl":null,"url":null,"abstract":"Impulsively generated focused jets play a significant role in various applications, including inkjet printing, needle-free drug delivery, and microfluidic devices. As the demand for generating jets and droplets from medium to highly viscous liquids increases, understanding the role of viscosity in jetting dynamics becomes crucial. While previous studies have examined the viscous effects on walls, the impact on free surfaces has not been thoroughly understood. This study aims to bridge this gap by integrating experiments with numerical simulations to investigate the viscous effects on focused jet formation. We demonstrate that mass and momentum transfer along the tangential direction of the free surface contribute to focused jet formation, and viscosity plays a key role in this transfer process. The viscosity-induced diffusion of the shear flow and vorticity near the free surface reduces the jet speed. Based on experimental observations and simulation results, we propose an equation to predict the viscous jet velocity. These findings offer new perspectives on viscous interface dynamics in advanced manufacturing and biomedical applications.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"45 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.l082001","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Impulsively generated focused jets play a significant role in various applications, including inkjet printing, needle-free drug delivery, and microfluidic devices. As the demand for generating jets and droplets from medium to highly viscous liquids increases, understanding the role of viscosity in jetting dynamics becomes crucial. While previous studies have examined the viscous effects on walls, the impact on free surfaces has not been thoroughly understood. This study aims to bridge this gap by integrating experiments with numerical simulations to investigate the viscous effects on focused jet formation. We demonstrate that mass and momentum transfer along the tangential direction of the free surface contribute to focused jet formation, and viscosity plays a key role in this transfer process. The viscosity-induced diffusion of the shear flow and vorticity near the free surface reduces the jet speed. Based on experimental observations and simulation results, we propose an equation to predict the viscous jet velocity. These findings offer new perspectives on viscous interface dynamics in advanced manufacturing and biomedical applications.

Abstract Image

粘性对脉冲产生的聚焦射流的影响
脉冲产生的聚焦射流在各种应用中发挥着重要作用,包括喷墨打印、无针给药和微流体设备。随着从中等粘度到高粘度液体中产生射流和液滴的需求增加,了解粘度在射流动力学中的作用变得至关重要。虽然之前的研究已经研究了粘度对壁面的影响,但对自由表面的影响还没有深入了解。本研究旨在弥合这一差距,将实验与数值模拟相结合,研究粘性对聚焦射流形成的影响。我们证明,沿自由表面切线方向的质量和动量传递有助于聚焦射流的形成,而粘度在这一传递过程中起着关键作用。自由表面附近由粘度引起的剪切流和涡度扩散降低了射流速度。根据实验观察和模拟结果,我们提出了一个预测粘性射流速度的方程。这些发现为先进制造和生物医学应用中的粘性界面动力学提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review Fluids
Physical Review Fluids Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
5.10
自引率
11.10%
发文量
488
期刊介绍: Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信