{"title":"Weak-inertial effects on destabilized receding contact lines","authors":"Akhil Varma","doi":"10.1103/physrevfluids.9.084006","DOIUrl":null,"url":null,"abstract":"It is known that, beyond a critical speed, the straight contact line of a partially -wetting liquid destabilizes into a corner. One of the earliest theoretical works exploring this phenomenon [Limat and Stone, <span>Europhys. Lett.</span> <b>65</b>, 365 (2004)] elicited a self-similar conical structure of the interface in the viscous regime. However, noting that inertia is not expected to be negligible at contact line speeds close to and beyond the critical value for many common liquids, we provide the leading-order inertial correction to their solution. In particular, we find the self-similar corrections to the interface shape as well as the flow field, and also determine their scaling with the capillary number. We find that inertia invariably modifies the interface into a cusplike shape with an increased film thickness. Furthermore, when incorporating contact line dynamics into the model, resulting in a narrowing of the corner as the contact line speed increases, we still observe an overall increase in the inertial contribution with speed despite the increased confinement.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"11 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.084006","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that, beyond a critical speed, the straight contact line of a partially -wetting liquid destabilizes into a corner. One of the earliest theoretical works exploring this phenomenon [Limat and Stone, Europhys. Lett.65, 365 (2004)] elicited a self-similar conical structure of the interface in the viscous regime. However, noting that inertia is not expected to be negligible at contact line speeds close to and beyond the critical value for many common liquids, we provide the leading-order inertial correction to their solution. In particular, we find the self-similar corrections to the interface shape as well as the flow field, and also determine their scaling with the capillary number. We find that inertia invariably modifies the interface into a cusplike shape with an increased film thickness. Furthermore, when incorporating contact line dynamics into the model, resulting in a narrowing of the corner as the contact line speed increases, we still observe an overall increase in the inertial contribution with speed despite the increased confinement.
期刊介绍:
Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.