{"title":"Prediction of noise generated by rod-airfoil configuration: An investigation based on experiments and machine learning","authors":"Eyup Kocak, Ece Ayli","doi":"10.1177/09544100241274508","DOIUrl":null,"url":null,"abstract":"This study investigated the effects of various parameters on the SPL (Sound Pressure Level) levels of rod-airfoil configurations. An experimental study was performed to investigate the effects of the rod parameters, such as the configuration of the rod, the distance between the rod and the airfoil, the diameter effect of the rod, and the geometry of the rod, on the performance of the rod-airfoil configuration. An Artificial Neural Network (ANN) model was then developed and applied to accurately predict the SPL of rod-airfoil configurations. The results of the study revealed that the Levenberg-Marquardt (LM) algorithm with 2 hidden neurons produced the best performance in predicting the SPL level, with a training R-squared value of 0.9998 and a testing R-squared value of 0.998715. The findings also indicated that increasing rod diameter increases sound pressure level while reducing gap width increases SPL levels and decreases frequency values. This method offers a more precise and effective technique to forecast the SPL levels of rod-airfoil designs, allowing designers to enhance their creations and lower noise levels. The findings of this study can also be utilized to direct future research in this area and offer important information for a better understanding of the mechanism of rod-airfoil noise creation. To the best of the authors’ knowledge, this is the first study to look into rod-airfoil design predictions made using machine learning approaches.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"49 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241274508","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effects of various parameters on the SPL (Sound Pressure Level) levels of rod-airfoil configurations. An experimental study was performed to investigate the effects of the rod parameters, such as the configuration of the rod, the distance between the rod and the airfoil, the diameter effect of the rod, and the geometry of the rod, on the performance of the rod-airfoil configuration. An Artificial Neural Network (ANN) model was then developed and applied to accurately predict the SPL of rod-airfoil configurations. The results of the study revealed that the Levenberg-Marquardt (LM) algorithm with 2 hidden neurons produced the best performance in predicting the SPL level, with a training R-squared value of 0.9998 and a testing R-squared value of 0.998715. The findings also indicated that increasing rod diameter increases sound pressure level while reducing gap width increases SPL levels and decreases frequency values. This method offers a more precise and effective technique to forecast the SPL levels of rod-airfoil designs, allowing designers to enhance their creations and lower noise levels. The findings of this study can also be utilized to direct future research in this area and offer important information for a better understanding of the mechanism of rod-airfoil noise creation. To the best of the authors’ knowledge, this is the first study to look into rod-airfoil design predictions made using machine learning approaches.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).