{"title":"Interpolatory quincunx quasi-tight and tight framelets","authors":"Ran Lu","doi":"10.1007/s43034-024-00390-5","DOIUrl":null,"url":null,"abstract":"<div><p>Constructing multivariate tight framelets is a challenging problem in wavelet and framelet theory. The problem is intrinsically related to the Hermitian sum of squares decomposition of multivariate trigonometric polynomials and the spectral factorization of multivariate trigonometric polynomial matrices. To circumvent the relevant difficulties, the notion of a quasi-tight framelet has been introduced in recent years, which generalizes the concept of tight framelets. On one hand, quasi-tight framelets behave similarly to tight framelets. On the other hand, compared to tight framelets, quasi-tight framelets have much more flexibility and advantages. Motivated by several recent studies of multivariate quasi-tight and tight framelets, we work on quincunx quasi-tight and tight framelets with the interpolatory properties in this paper. We first show that from any interpolatory quincunx refinement filter, one can always construct an interpolatory quasi-tight framelet with three generators. Next, we shall present a way to construct interpolatory quincunx quasi-tight framelets with high-order vanishing moments. Finally, we will establish an algorithm to construct interpolatory quincunx tight framelets from any interpolatory quincunx refinement filter that satisfies the so-called sum-of-squares (SOS) condition. All our proofs are constructive, and several examples in dimension <span>\\(d=2\\)</span> will be provided to illustrate our main results.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00390-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Constructing multivariate tight framelets is a challenging problem in wavelet and framelet theory. The problem is intrinsically related to the Hermitian sum of squares decomposition of multivariate trigonometric polynomials and the spectral factorization of multivariate trigonometric polynomial matrices. To circumvent the relevant difficulties, the notion of a quasi-tight framelet has been introduced in recent years, which generalizes the concept of tight framelets. On one hand, quasi-tight framelets behave similarly to tight framelets. On the other hand, compared to tight framelets, quasi-tight framelets have much more flexibility and advantages. Motivated by several recent studies of multivariate quasi-tight and tight framelets, we work on quincunx quasi-tight and tight framelets with the interpolatory properties in this paper. We first show that from any interpolatory quincunx refinement filter, one can always construct an interpolatory quasi-tight framelet with three generators. Next, we shall present a way to construct interpolatory quincunx quasi-tight framelets with high-order vanishing moments. Finally, we will establish an algorithm to construct interpolatory quincunx tight framelets from any interpolatory quincunx refinement filter that satisfies the so-called sum-of-squares (SOS) condition. All our proofs are constructive, and several examples in dimension \(d=2\) will be provided to illustrate our main results.
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.