Exploring multi-level transformers with feature frame padding network for 3D human pose estimation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sathiyamoorthi Arthanari, Jae Hoon Jeong, Young Hoon Joo
{"title":"Exploring multi-level transformers with feature frame padding network for 3D human pose estimation","authors":"Sathiyamoorthi Arthanari, Jae Hoon Jeong, Young Hoon Joo","doi":"10.1007/s00530-024-01451-4","DOIUrl":null,"url":null,"abstract":"<p>Recently, transformer-based architecture achieved remarkable performance in 2D to 3D lifting pose estimation. Despite advancements in transformer-based architecture they still struggle to handle depth ambiguity, limited temporal information, lacking edge frame details, and short-term temporal features. Consequently, transformer architecture encounters challenges in preciously estimating the 3D human position. To address these problems, we proposed Multi-Level Transformers with a Feature Frame Padding Network (MLTFFPN). To do this, we first propose the frame-padding network, which allows the network to capture longer temporal dependencies and effectively address the lacking edge frame information, enabling a better understanding of the sequential nature of human motion and improving the accuracy of pose estimation. Furthermore, we employ a multi-level transformer to extract temporal information from 3D human poses, which aims to improve the short-range temporal dependencies among keypoints of the human pose skeleton. Specifically, we introduce the Refined Temporal Constriction and Proliferation Transformer (RTCPT), which incorporates spatio-temporal encoders and a Temporal Constriction and Proliferation (TCP) structure to reveal multi-scale attention information and effectively addresses the depth ambiguity problem. Moreover, we incorporate the Feature Aggregation Refinement (FAR) module into the TCP block in a cross-layer manner, which facilitates semantic representation through the persistent interaction of queries, keys, and values. We extensively evaluate the efficiency of our method through experiments on two well-known benchmark datasets: Human3.6M and MPI-INF-3DHP.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01451-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, transformer-based architecture achieved remarkable performance in 2D to 3D lifting pose estimation. Despite advancements in transformer-based architecture they still struggle to handle depth ambiguity, limited temporal information, lacking edge frame details, and short-term temporal features. Consequently, transformer architecture encounters challenges in preciously estimating the 3D human position. To address these problems, we proposed Multi-Level Transformers with a Feature Frame Padding Network (MLTFFPN). To do this, we first propose the frame-padding network, which allows the network to capture longer temporal dependencies and effectively address the lacking edge frame information, enabling a better understanding of the sequential nature of human motion and improving the accuracy of pose estimation. Furthermore, we employ a multi-level transformer to extract temporal information from 3D human poses, which aims to improve the short-range temporal dependencies among keypoints of the human pose skeleton. Specifically, we introduce the Refined Temporal Constriction and Proliferation Transformer (RTCPT), which incorporates spatio-temporal encoders and a Temporal Constriction and Proliferation (TCP) structure to reveal multi-scale attention information and effectively addresses the depth ambiguity problem. Moreover, we incorporate the Feature Aggregation Refinement (FAR) module into the TCP block in a cross-layer manner, which facilitates semantic representation through the persistent interaction of queries, keys, and values. We extensively evaluate the efficiency of our method through experiments on two well-known benchmark datasets: Human3.6M and MPI-INF-3DHP.

Abstract Image

利用特征帧填充网络探索用于三维人体姿态估计的多级变换器
最近,基于变换器的架构在从二维到三维的升降姿态估计方面取得了显著的性能。尽管基于变换器的架构取得了进步,但它们在处理深度模糊性、有限的时间信息、缺乏边缘帧细节和短期时间特征等问题上仍有困难。因此,变换器架构在精确估计三维人体位置方面遇到了挑战。为了解决这些问题,我们提出了带有特征帧填充网络(MLTFFPN)的多级变换器。为此,我们首先提出了帧填充网络,使网络能够捕捉更长的时间依赖性,有效解决边缘帧信息不足的问题,从而更好地理解人体运动的连续性,提高姿势估计的准确性。此外,我们采用多级变换器从三维人体姿势中提取时间信息,旨在改善人体姿势骨架关键点之间的短程时间依赖关系。具体来说,我们引入了精炼时空收缩和扩散变换器(RTCPT),该变换器结合了时空编码器和时空收缩和扩散(TCP)结构,以揭示多尺度注意力信息,并有效解决深度模糊问题。此外,我们还以跨层方式将特征聚合细化(FAR)模块纳入 TCP 块,通过查询、键和值的持续交互促进语义表示。我们通过在两个著名的基准数据集上进行实验,广泛评估了我们方法的效率:Human3.6M 和 MPI-INF-3DHP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信