Anomaly detection in surveillance videos using Transformer with margin learning

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dicong Wang, Kaijun Wu
{"title":"Anomaly detection in surveillance videos using Transformer with margin learning","authors":"Dicong Wang, Kaijun Wu","doi":"10.1007/s00530-024-01443-4","DOIUrl":null,"url":null,"abstract":"<p>Weakly supervised video anomaly detection (WSVAD) constitutes a highly research-oriented and challenging project within the domains of image and video processing. In prior studies of WSVAD, it has typically been formulated as a multiple-instance learning (MIL) problem. However, quite a few of these methods tend to primarily concentrate on time periods when anomalies occur discernibly. To recognize anomalous events, they rely solely on detecting significant changes in appearance or motion, ignoring the temporal completeness or continuity that anomalous events possess by nature. In addition, they also disregard the subtle correlations at the transitional boundaries between normal and abnormal states. Therefore, we propose a weakly supervised learning approach based on Transformer with margin learning for video anomaly detection. Specifically, our network effectively captures temporal changes around the occurrence of anomalies by utilizing the benefits of Transformer blocks, which are adept at capturing long-range dependencies in anomalous events. Secondly, to tackle challenging cases, i.e., normal events with high similarity to anomalous events, we employed a hard score memory. The purpose of this memory is to store the anomaly scores of hard samples, enabling iterative optimization training on those hard instances. Additionally, to bolster the discriminative capability of the model at the score level, we utilize pseudo-labels for anomalous events to provide supplementary support in detection. Experiments were conducted on two large-scale datasets, namely the ShanghaiTech dataset and the UCF-Crime dataset, and they achieved highly favorable results. The results of the experiments demonstrate that the proposed method is sensitive to anomalous events while performing competitively against state-of-the-art methods.</p>","PeriodicalId":51138,"journal":{"name":"Multimedia Systems","volume":"49 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01443-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Weakly supervised video anomaly detection (WSVAD) constitutes a highly research-oriented and challenging project within the domains of image and video processing. In prior studies of WSVAD, it has typically been formulated as a multiple-instance learning (MIL) problem. However, quite a few of these methods tend to primarily concentrate on time periods when anomalies occur discernibly. To recognize anomalous events, they rely solely on detecting significant changes in appearance or motion, ignoring the temporal completeness or continuity that anomalous events possess by nature. In addition, they also disregard the subtle correlations at the transitional boundaries between normal and abnormal states. Therefore, we propose a weakly supervised learning approach based on Transformer with margin learning for video anomaly detection. Specifically, our network effectively captures temporal changes around the occurrence of anomalies by utilizing the benefits of Transformer blocks, which are adept at capturing long-range dependencies in anomalous events. Secondly, to tackle challenging cases, i.e., normal events with high similarity to anomalous events, we employed a hard score memory. The purpose of this memory is to store the anomaly scores of hard samples, enabling iterative optimization training on those hard instances. Additionally, to bolster the discriminative capability of the model at the score level, we utilize pseudo-labels for anomalous events to provide supplementary support in detection. Experiments were conducted on two large-scale datasets, namely the ShanghaiTech dataset and the UCF-Crime dataset, and they achieved highly favorable results. The results of the experiments demonstrate that the proposed method is sensitive to anomalous events while performing competitively against state-of-the-art methods.

Abstract Image

利用边际学习变压器检测监控视频中的异常情况
弱监督视频异常检测(WSVAD)是图像和视频处理领域中一个极具研究导向和挑战性的项目。在之前对 WSVAD 的研究中,它通常被表述为一个多实例学习 (MIL) 问题。然而,这些方法中的相当一部分往往主要集中在异常情况明显发生的时间段。要识别异常事件,它们只依赖于检测外观或运动的显著变化,而忽略了异常事件本质上具有的时间完整性或连续性。此外,它们还忽略了正常与异常状态之间过渡边界的微妙关联。因此,我们提出了一种基于 Transformer 的弱监督学习方法,利用边际学习进行视频异常检测。具体地说,我们的网络利用 Transformer 模块善于捕捉异常事件中的长距离依赖关系的优势,有效地捕捉了异常事件发生前后的时间变化。其次,为了应对具有挑战性的情况,即与异常事件高度相似的正常事件,我们采用了硬分数存储器。该存储器的目的是存储高难度样本的异常得分,以便在这些高难度实例上进行迭代优化训练。此外,为了增强模型在分数层面的判别能力,我们还利用异常事件的伪标签为检测提供辅助支持。我们在两个大型数据集(即上海科技数据集和 UCF-Crime 数据集)上进行了实验,并取得了非常好的结果。实验结果表明,所提出的方法对异常事件很敏感,同时与最先进的方法相比具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multimedia Systems
Multimedia Systems 工程技术-计算机:理论方法
CiteScore
5.40
自引率
7.70%
发文量
148
审稿时长
4.5 months
期刊介绍: This journal details innovative research ideas, emerging technologies, state-of-the-art methods and tools in all aspects of multimedia computing, communication, storage, and applications. It features theoretical, experimental, and survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信