A quadratic optimization program for the inverse elastography problem

IF 1.2 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Sílvia Barbeiro, Rafael Henriques, José Luis Santos
{"title":"A quadratic optimization program for the inverse elastography problem","authors":"Sílvia Barbeiro, Rafael Henriques, José Luis Santos","doi":"10.1186/s13362-024-00156-7","DOIUrl":null,"url":null,"abstract":"In this work we focus on the development of a numerical algorithm for the inverse elastography problem. The goal is to perform an efficient material parameter identification knowing the elastic displacement field induced by a mechanical load. We propose to define the inverse problem through a quadratic optimization program which uses the direct problem formulation to define the objective function. In this way, we end up with a convex minimization problem which attains its minimum at the solution of a linear system. The effectiveness of our method is illustrated through numeral examples.","PeriodicalId":44012,"journal":{"name":"Journal of Mathematics in Industry","volume":"49 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-024-00156-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we focus on the development of a numerical algorithm for the inverse elastography problem. The goal is to perform an efficient material parameter identification knowing the elastic displacement field induced by a mechanical load. We propose to define the inverse problem through a quadratic optimization program which uses the direct problem formulation to define the objective function. In this way, we end up with a convex minimization problem which attains its minimum at the solution of a linear system. The effectiveness of our method is illustrated through numeral examples.
反弹性成像问题的二次优化程序
在这项工作中,我们重点开发了一种用于反弹性成像问题的数值算法。我们的目标是在了解机械载荷引起的弹性位移场的情况下,进行有效的材料参数识别。我们建议通过二次优化程序来定义逆问题,该程序使用直接问题公式来定义目标函数。这样,我们就得到了一个凸最小化问题,该问题在线性系统的解中达到最小值。我们将通过数字示例来说明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics in Industry
Journal of Mathematics in Industry MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.00
自引率
0.00%
发文量
12
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信