Ensemble Kalman inversion for image guided guide wire navigation in vascular systems

IF 1.2 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Matei Hanu, Jürgen Hesser, Guido Kanschat, Javier Moviglia, Claudia Schillings, Jan Stallkamp
{"title":"Ensemble Kalman inversion for image guided guide wire navigation in vascular systems","authors":"Matei Hanu, Jürgen Hesser, Guido Kanschat, Javier Moviglia, Claudia Schillings, Jan Stallkamp","doi":"10.1186/s13362-024-00159-4","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenging task of guide wire navigation in cardiovascular interventions, focusing on the parameter estimation of a guide wire system using Ensemble Kalman Inversion (EKI) with a subsampling technique. The EKI uses an ensemble of particles to estimate the unknown quantities. However, since the data misfit has to be computed for each particle in each iteration, the EKI may become computationally infeasible in the case of high-dimensional data, e.g. high-resolution images. This issue can been addressed by randomised algorithms that utilize only a random subset of the data in each iteration. We introduce and analyse a subsampling technique for the EKI, which is based on a continuous-time representation of stochastic gradient methods and apply it to on the parameter estimation of our guide wire system. Numerical experiments with real data from a simplified test setting demonstrate the potential of the method.","PeriodicalId":44012,"journal":{"name":"Journal of Mathematics in Industry","volume":"34 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-024-00159-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the challenging task of guide wire navigation in cardiovascular interventions, focusing on the parameter estimation of a guide wire system using Ensemble Kalman Inversion (EKI) with a subsampling technique. The EKI uses an ensemble of particles to estimate the unknown quantities. However, since the data misfit has to be computed for each particle in each iteration, the EKI may become computationally infeasible in the case of high-dimensional data, e.g. high-resolution images. This issue can been addressed by randomised algorithms that utilize only a random subset of the data in each iteration. We introduce and analyse a subsampling technique for the EKI, which is based on a continuous-time representation of stochastic gradient methods and apply it to on the parameter estimation of our guide wire system. Numerical experiments with real data from a simplified test setting demonstrate the potential of the method.
用于血管系统图像引导导丝导航的集合卡尔曼反演
本文探讨了心血管介入治疗中导引线导航这一具有挑战性的任务,重点是利用集合卡尔曼反演(EKI)和子采样技术对导引线系统进行参数估计。EKI 使用粒子集合来估计未知量。然而,由于在每次迭代中都要计算每个粒子的数据错配,因此在高维数据(如高分辨率图像)的情况下,EKI 在计算上可能会变得不可行。这个问题可以通过随机算法来解决,即在每次迭代中只使用数据的随机子集。我们介绍并分析了一种基于随机梯度法连续时间表示的 EKI 子采样技术,并将其应用于导丝系统的参数估计。利用简化测试环境中的真实数据进行的数值实验证明了该方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics in Industry
Journal of Mathematics in Industry MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.00
自引率
0.00%
发文量
12
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信