Synergistic effect of cobalt ferrite-graphene oxide based hyperthermia and capsaicin to induce apoptosis and inhibit telomerase activity in breast cancer cells
Seyed Ali Lajevardian, Abbas Alibakhshi, Simzar Hosseinzadeh, Fatemeh Mobaraki, Monireh Movahedi, Shadie Hatamie, Maryam Tabarzad, Javad Ranjbari
{"title":"Synergistic effect of cobalt ferrite-graphene oxide based hyperthermia and capsaicin to induce apoptosis and inhibit telomerase activity in breast cancer cells","authors":"Seyed Ali Lajevardian, Abbas Alibakhshi, Simzar Hosseinzadeh, Fatemeh Mobaraki, Monireh Movahedi, Shadie Hatamie, Maryam Tabarzad, Javad Ranjbari","doi":"10.1088/2043-6262/ad71a5","DOIUrl":null,"url":null,"abstract":"Capsaicin is a bioactive phytochemical of red and chili peppers. It has shown therapeutic properties, including anticancer activities. In this study, the potential anti-telomerase effect of capsaicin, as well as synergic inhibitory effect of this compound in combination with cobalt ferrite-graphene oxide nanocomposites was investigated on breast cancer cell line. For this purpose, cobalt ferrite/graphene oxide (CoFe<sub>2</sub>O<sub>4</sub>/GO) nanoparticles were synthesized and characterized. Then, the effect of different concentrations of capsaicin and CoFe<sub>2</sub>O<sub>4</sub>/GO nanoparticles, and their combination on the breast adenocarcinoma cell lines (MCF-7 and MCF-10A) were analyzed using MTT assay and quantitative real-time PCR for assessing their effect on the cell viability and the expression changes in telomerase reverse transcriptase (<italic toggle=\"yes\">tert</italic>), Bax and Bcl2 genes, respectively. The results showed a synergistic effect of capsaicin and CoFe<sub>2</sub>O<sub>4</sub>/GO NPs on MCF-7 cell lines that reduced the IC50 value from 0.1 and 1 mg/ml for capsaicin and CoFe<sub>2</sub>O<sub>4</sub>/GO nanoparticles, to 0.05 and 0.5 mg ml<sup>−1</sup>, respectively. Moreover, <italic toggle=\"yes\">telomerase</italic> and <italic toggle=\"yes\">bcl</italic>2 genes expression decreased after capsaicin and CoFe<sub>2</sub>O<sub>4</sub>/GO NPs treatment; while in contrast, <italic toggle=\"yes\">bax</italic> gene expression significantly increased. Consequently, capsaicin and CoFe<sub>2</sub>O<sub>4</sub>/GO NPs treatment could induce apoptosis and inhibit the growth of breast cancer cells. In conclusion, combinational treatment with capsaicin and CoFe<sub>2</sub>O<sub>4</sub>/GO NPs could be considered as an efficient therapeutic regimen for breast cancer.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"177 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/ad71a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Capsaicin is a bioactive phytochemical of red and chili peppers. It has shown therapeutic properties, including anticancer activities. In this study, the potential anti-telomerase effect of capsaicin, as well as synergic inhibitory effect of this compound in combination with cobalt ferrite-graphene oxide nanocomposites was investigated on breast cancer cell line. For this purpose, cobalt ferrite/graphene oxide (CoFe2O4/GO) nanoparticles were synthesized and characterized. Then, the effect of different concentrations of capsaicin and CoFe2O4/GO nanoparticles, and their combination on the breast adenocarcinoma cell lines (MCF-7 and MCF-10A) were analyzed using MTT assay and quantitative real-time PCR for assessing their effect on the cell viability and the expression changes in telomerase reverse transcriptase (tert), Bax and Bcl2 genes, respectively. The results showed a synergistic effect of capsaicin and CoFe2O4/GO NPs on MCF-7 cell lines that reduced the IC50 value from 0.1 and 1 mg/ml for capsaicin and CoFe2O4/GO nanoparticles, to 0.05 and 0.5 mg ml−1, respectively. Moreover, telomerase and bcl2 genes expression decreased after capsaicin and CoFe2O4/GO NPs treatment; while in contrast, bax gene expression significantly increased. Consequently, capsaicin and CoFe2O4/GO NPs treatment could induce apoptosis and inhibit the growth of breast cancer cells. In conclusion, combinational treatment with capsaicin and CoFe2O4/GO NPs could be considered as an efficient therapeutic regimen for breast cancer.