{"title":"Chiral-Bisphosphine-Catalyzed Asymmetric Staudinger/Aza-Wittig Reaction: Development, Mechanism Study, and Synthetic Application","authors":"Hongzhi Yang, Truc Quynh Nguyen, Yefeng Tang","doi":"10.1055/s-0043-1775038","DOIUrl":null,"url":null,"abstract":"<p>The enantioselective desymmetrization of 2,2-disubstituted cyclohexane-1,3-diones has been realized through an unprecedented chiral-bisphosphine-catalyzed asymmetric Staudinger/aza-Wittig reaction. The key to this work’s success lies in utilizing an electronically rich and sterically hindered chiral bisphosphine reagent, namely DuanPhos, as a catalyst. In addition, a unique reductive system was established to address the requisite P<sup>III/PV</sup> = O redox cycle. The mechanism of the chiral-bisphosphine-catalyzed asymmetric Staudinger/aza-Wittig reaction has been elucidated through combined computational and experimental studies. Several crinine-type amaryllidaceae alkaloids have been synthesized concisely, hinging on the newly developed methodology.</p> ","PeriodicalId":22319,"journal":{"name":"Synlett","volume":"263 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synlett","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1055/s-0043-1775038","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The enantioselective desymmetrization of 2,2-disubstituted cyclohexane-1,3-diones has been realized through an unprecedented chiral-bisphosphine-catalyzed asymmetric Staudinger/aza-Wittig reaction. The key to this work’s success lies in utilizing an electronically rich and sterically hindered chiral bisphosphine reagent, namely DuanPhos, as a catalyst. In addition, a unique reductive system was established to address the requisite PIII/PV = O redox cycle. The mechanism of the chiral-bisphosphine-catalyzed asymmetric Staudinger/aza-Wittig reaction has been elucidated through combined computational and experimental studies. Several crinine-type amaryllidaceae alkaloids have been synthesized concisely, hinging on the newly developed methodology.
期刊介绍:
SYNLETT is an international journal reporting research results and current trends in chemical synthesis in short personalized reviews and preliminary communications. It covers all fields of scientific endeavor that involve organic synthesis, including catalysis, organometallic, medicinal, biological, and photochemistry, but also related disciplines and offers the possibility to publish scientific primary data.