A study of $${\textrm{v}}$$ -number for some monomial ideals

IF 0.7 2区 数学 Q2 MATHEMATICS
Prativa Biswas, Mousumi Mandal
{"title":"A study of $${\\textrm{v}}$$ -number for some monomial ideals","authors":"Prativa Biswas, Mousumi Mandal","doi":"10.1007/s13348-024-00451-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we give formulas for <span>\\({\\textrm{v}}\\)</span>-number of edge ideals of some graphs like path, cycle, 1-clique sum of a path and a cycle, 1-clique sum of two cycles and join of two graphs. For an <span>\\({\\mathfrak {m}}\\)</span>-primary monomial ideal <span>\\(I\\subset S=K[x_1,\\ldots ,x_t]\\)</span>, we provide an explicit expression of <span>\\({\\textrm{v}}\\)</span>-number of <i>I</i>, denoted by <span>\\({\\textrm{v}}(I)\\)</span>, and give an upper bound of <span>\\({\\textrm{v}}(I)\\)</span> in terms of the degree of its generators. We show that for a monomial ideal <i>I</i>, <span>\\({\\textrm{v}}(I^{n+1})\\)</span> is bounded above by a linear polynomial for large <i>n</i> and for certain classes of monomial ideals, the upper bound is achieved for all <span>\\(n\\ge 1\\)</span>. For <span>\\({\\mathfrak {m}}\\)</span>-primary monomial ideal <i>I</i> we prove that <span>\\({\\textrm{v}}(I)\\le {\\text {reg}}(S/I)\\)</span> and their difference can be arbitrarily large.</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":"43 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13348-024-00451-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give formulas for \({\textrm{v}}\)-number of edge ideals of some graphs like path, cycle, 1-clique sum of a path and a cycle, 1-clique sum of two cycles and join of two graphs. For an \({\mathfrak {m}}\)-primary monomial ideal \(I\subset S=K[x_1,\ldots ,x_t]\), we provide an explicit expression of \({\textrm{v}}\)-number of I, denoted by \({\textrm{v}}(I)\), and give an upper bound of \({\textrm{v}}(I)\) in terms of the degree of its generators. We show that for a monomial ideal I, \({\textrm{v}}(I^{n+1})\) is bounded above by a linear polynomial for large n and for certain classes of monomial ideals, the upper bound is achieved for all \(n\ge 1\). For \({\mathfrak {m}}\)-primary monomial ideal I we prove that \({\textrm{v}}(I)\le {\text {reg}}(S/I)\) and their difference can be arbitrarily large.

Abstract Image

某些单项式理想的 $${textrm{v}}$ 数的研究
本文给出了一些图的边理想数的公式,如路径、循环、一个路径和一个循环的 1-clique 和、两个循环的 1-clique 和以及两个图的连接。对于一个主一元理想 \(I/子集 S=K[x_1,\ldots,x_t]),我们提供了 I 的 \({\textrm{v}})数的明确表达式、表示为 \({\textrm{v}}(I)\),并给出了 \({\textrm{v}}(I)\)的上界。我们证明,对于一个单项式理想 I,\({\textrm{v}}(I^{n+1})\)在大 n 的情况下被一个线性多项式限定,而且对于某些类的单项式理想,所有的\(n\ge 1\) 都能达到这个上界。对于 \({\mathfrak {m}}\)-primary monomial ideal I,我们证明 \({\textrm{v}}(I)\le {\text {reg}}(S/I)\) 和它们的差值可以任意大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Collectanea Mathematica
Collectanea Mathematica 数学-数学
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
>12 weeks
期刊介绍: Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信