{"title":"Strong local variational approach for superconductivity theory, and the principles of coherent interaction and action-counteraction","authors":"ChaoFan Yu, Xuyang Chen, ZhiHua Luo","doi":"arxiv-2409.04317","DOIUrl":null,"url":null,"abstract":"For the two-mode electron pairing, we propose a local stacking force pairing\nmechanism driven by strong local fluctuations, with two straight pairing orbits\nwhere the tying Cooper pairing $C_{-k\\downarrow}C_{k\\uparrow}e^{ik\\cdot r}$\nreplaces the itinerant pairing. Based on coherent interaction and\naction-counteraction principles, the strong local variational theory is\nconstructed, with the energy extremum and gap equations forming self-consistent\npairs, involving the local variational parameter $\\lambda$, energy gap\n$\\Delta$, and the energy cut-off $\\hbar \\omega_0$. As $\\hbar \\omega_0(j)$\napproaches its cut-off, $\\lambda$ and $\\Delta$ converge to fixed values. The\ntheory predicts that the coupling strength $Vg(0)$ reduces to\n$\\tilde{V}g(0)=e^{-\\left(1-\\alpha_{1}\\right)^{2} k^{2} / 4 \\lambda^{2}} Vg(0)$,\nand the Cooper pair reduces similarly. For weak coupling, $\\alpha_1=1$, and\nwhen $Vg(0)=0.1$, $\\Delta_{\\mathrm{A \\cdot C}}=108 \\Delta_{\\text{BCS}}$, but\n$\\Delta_{\\mathrm{A \\cdot C}}$ decreases to $28 \\Delta_{\\text{BCS}}$ at\n$Vg(0)=0.2$. For strong coupling, $\\alpha_1=0$, if $Vg(0)=1.4$, $\\tilde{V}\ng(0)$ reduces to 0.2, and the smaller Cooper pair $\\widetilde{C_{k \\uparrow}\nC_{-k \\downarrow}}$ reduces to $0.14 C_{k \\uparrow} C_{-k \\downarrow}$.\nAdditionally, $\\Delta_{\\mathrm{A \\cdot C}} = 0.5676~\\text{eV} \\gg \\hbar\n\\omega_{\\text{D}}$, and the local stacking force is\n$\\widetilde{V}_{\\text{st}}=0.264 ~\\text{eV}$. With $k^2/\\lambda^2 =$ const, the\nlocal strength increases, causing the stacking force to grow significantly.\nThus, $\\hbar \\omega_0$ and $\\Delta$ yield a unique solution.","PeriodicalId":501069,"journal":{"name":"arXiv - PHYS - Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For the two-mode electron pairing, we propose a local stacking force pairing
mechanism driven by strong local fluctuations, with two straight pairing orbits
where the tying Cooper pairing $C_{-k\downarrow}C_{k\uparrow}e^{ik\cdot r}$
replaces the itinerant pairing. Based on coherent interaction and
action-counteraction principles, the strong local variational theory is
constructed, with the energy extremum and gap equations forming self-consistent
pairs, involving the local variational parameter $\lambda$, energy gap
$\Delta$, and the energy cut-off $\hbar \omega_0$. As $\hbar \omega_0(j)$
approaches its cut-off, $\lambda$ and $\Delta$ converge to fixed values. The
theory predicts that the coupling strength $Vg(0)$ reduces to
$\tilde{V}g(0)=e^{-\left(1-\alpha_{1}\right)^{2} k^{2} / 4 \lambda^{2}} Vg(0)$,
and the Cooper pair reduces similarly. For weak coupling, $\alpha_1=1$, and
when $Vg(0)=0.1$, $\Delta_{\mathrm{A \cdot C}}=108 \Delta_{\text{BCS}}$, but
$\Delta_{\mathrm{A \cdot C}}$ decreases to $28 \Delta_{\text{BCS}}$ at
$Vg(0)=0.2$. For strong coupling, $\alpha_1=0$, if $Vg(0)=1.4$, $\tilde{V}
g(0)$ reduces to 0.2, and the smaller Cooper pair $\widetilde{C_{k \uparrow}
C_{-k \downarrow}}$ reduces to $0.14 C_{k \uparrow} C_{-k \downarrow}$.
Additionally, $\Delta_{\mathrm{A \cdot C}} = 0.5676~\text{eV} \gg \hbar
\omega_{\text{D}}$, and the local stacking force is
$\widetilde{V}_{\text{st}}=0.264 ~\text{eV}$. With $k^2/\lambda^2 =$ const, the
local strength increases, causing the stacking force to grow significantly.
Thus, $\hbar \omega_0$ and $\Delta$ yield a unique solution.