Spectroscopic evidence for a first-order transition to the orbital Fulde-Ferrell-Larkin-Ovchinnikov state

Zongzheng Cao, Menghan Liao, Hongyi Yan, Yuying Zhu, Liguo Zhang, Kenji Watanabe, Takashi Taniguchi, Alberto F. Morpurgo, Haiwen Liu, Qi-Kun Xue, Ding Zhang
{"title":"Spectroscopic evidence for a first-order transition to the orbital Fulde-Ferrell-Larkin-Ovchinnikov state","authors":"Zongzheng Cao, Menghan Liao, Hongyi Yan, Yuying Zhu, Liguo Zhang, Kenji Watanabe, Takashi Taniguchi, Alberto F. Morpurgo, Haiwen Liu, Qi-Kun Xue, Ding Zhang","doi":"arxiv-2409.00373","DOIUrl":null,"url":null,"abstract":"A conventional superconducting state may be replaced by another\ndissipationless state hosting Cooper pairs with a finite momentum, leaving\nthermodynamic footprints for such a phase transition. Recently, a novel type of\nfinite momentum pairing, so-called orbital Fulde-Ferrell-Larkin-Ovchinnikov\n(FFLO) state, has been proposed to occur in spin-orbit coupled superconductors\nsuch as bilayer $2\\mathrm{H-NbSe_{2}}$. So far, a thermodynamic demonstration,\nwhich is key for establishing this exotic phase, has been lacking. Here, we\nreveal a first-order quantum phase transition to the orbital FFLO state in\ntunneling spectroscopic measurements on multilayer $2\\mathrm{H-NbSe_{2}}$. The\nphase transition manifests itself as a sudden enhancement of the\nsuperconducting gap at an in-plane magnetic field $B_{//}$ well below the upper\ncritical field. Furthermore, this transition shows prominent hysteresis by\nsweeping $B_{//}$ back and forth and quickly disappears once the magnetic field\nis tilted away from the sample plane by less than one degree. We obtain a\ncomprehensive phase diagram for the orbital FFLO state and compare it with the\ntheoretical calculation that takes into account the rearrangement of Josephson\nvortices. Our work elucidates the microscopic mechanism for the emergence of\nthe orbital FFLO state.","PeriodicalId":501069,"journal":{"name":"arXiv - PHYS - Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A conventional superconducting state may be replaced by another dissipationless state hosting Cooper pairs with a finite momentum, leaving thermodynamic footprints for such a phase transition. Recently, a novel type of finite momentum pairing, so-called orbital Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, has been proposed to occur in spin-orbit coupled superconductors such as bilayer $2\mathrm{H-NbSe_{2}}$. So far, a thermodynamic demonstration, which is key for establishing this exotic phase, has been lacking. Here, we reveal a first-order quantum phase transition to the orbital FFLO state in tunneling spectroscopic measurements on multilayer $2\mathrm{H-NbSe_{2}}$. The phase transition manifests itself as a sudden enhancement of the superconducting gap at an in-plane magnetic field $B_{//}$ well below the upper critical field. Furthermore, this transition shows prominent hysteresis by sweeping $B_{//}$ back and forth and quickly disappears once the magnetic field is tilted away from the sample plane by less than one degree. We obtain a comprehensive phase diagram for the orbital FFLO state and compare it with the theoretical calculation that takes into account the rearrangement of Josephson vortices. Our work elucidates the microscopic mechanism for the emergence of the orbital FFLO state.
向轨道 Fulde-Ferrell-Larkin-Ovchinnikov 状态一阶转变的光谱证据
传统的超导态可能会被另一种容纳有限动量库珀对的无消散态所取代,从而为这种相变留下热力学足迹。最近,有人提出了一种新型的无限动量配对,即所谓的轨道富勒德-费雷尔-拉金-奥夫钦尼科夫(FFLO)态,它发生在自旋轨道耦合超导体中,如双层2美元(2,mathrm{H-NbSe_{2}}$)。到目前为止,还缺乏热力学证明,而热力学证明是建立这一奇异相位的关键。在这里,我们通过对多层2/mathrm{H-NbSe_{2}$的隧道光谱测量,揭示了向轨道FFLO态的一阶量子相变。这种相变表现为在面内磁场 $B_{/}$ 远远低于上临界磁场时超导间隙的突然增强。此外,这种转变在来回移动 $B_{/}$ 时表现出明显的滞后性,一旦磁场偏离样品平面的倾斜度小于一度,这种转变就会迅速消失。我们获得了轨道 FFLO 状态的综合相图,并将其与考虑了约瑟夫森涡重新排列的理论计算结果进行了比较。我们的工作阐明了轨道 FFLO 状态出现的微观机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信