Helene Fog Froriep Halberg, Marta Bevilacqua, Åsmund Rinnan
{"title":"Resampling as a Robust Measure of Model Complexity in PARAFAC Models","authors":"Helene Fog Froriep Halberg, Marta Bevilacqua, Åsmund Rinnan","doi":"10.1002/cem.3601","DOIUrl":null,"url":null,"abstract":"Fluorescence spectroscopy has been applied for analysis of complex samples, such as food and beverages. Parallel factor analysis (PARAFAC) is a well‐known decomposition method for fluorescence excitation–emission matrices (EEMs). When the complexity of the system increases, it becomes considerably more difficult to determine the optimal number of PARAFAC components, especially when the fluorophores of the system are unknown. The two commonly applied diagnostics, core consistency and split‐half analysis, appear to underestimate the model complexity due to covarying components and local minima, respectively. As a more robust alternative, we propose a resampling approach with multiple initializations and submodel comparisons for estimating the optimal number of PARAFAC components in complex data.","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cem.3601","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescence spectroscopy has been applied for analysis of complex samples, such as food and beverages. Parallel factor analysis (PARAFAC) is a well‐known decomposition method for fluorescence excitation–emission matrices (EEMs). When the complexity of the system increases, it becomes considerably more difficult to determine the optimal number of PARAFAC components, especially when the fluorophores of the system are unknown. The two commonly applied diagnostics, core consistency and split‐half analysis, appear to underestimate the model complexity due to covarying components and local minima, respectively. As a more robust alternative, we propose a resampling approach with multiple initializations and submodel comparisons for estimating the optimal number of PARAFAC components in complex data.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.