Necessary conditions for the boundedness of fractional operators on variable Lebesgue spaces

David Cruz-Uribe, Troy Roberts
{"title":"Necessary conditions for the boundedness of fractional operators on variable Lebesgue spaces","authors":"David Cruz-Uribe, Troy Roberts","doi":"arxiv-2408.12745","DOIUrl":null,"url":null,"abstract":"In this paper we prove necessary conditions for the boundedness of fractional\noperators on the variable Lebesgue spaces. More precisely, we find necessary\nconditions on an exponent function $\\pp$ for a fractional maximal operator\n$M_\\alpha$ or a non-degenerate fractional singular integral operator\n$T_\\alpha$, $0 \\leq \\alpha < n$, to satisfy weak $(\\pp,\\qq)$ inequalities or\nstrong $(\\pp,\\qq)$ inequalities, with $\\qq$ being defined pointwise almost\neverywhere by % \\[ \\frac{1}{p(x)} - \\frac{1}{q(x)} = \\frac{\\alpha}{n}. \\] % We first prove preliminary results linking fractional averaging operators and\nthe $K_0^\\alpha$ condition, a qualitative condition on $\\pp$ related to the\nnorms of characteristic functions of cubes, and show some useful implications\nof the $K_0^\\alpha$ condition. We then show that if $M_\\alpha$ satisfies weak\n$(\\pp,\\qq)$ inequalities, then $\\pp \\in K_0^\\alpha(\\R^n)$. We use this to prove\nthat if $M_\\alpha$ satisfies strong $(\\pp,\\qq)$ inequalities, then $p_->1$.\nFinally, we prove a powerful pointwise estimate for $T_\\alpha$ that relates\n$T_\\alpha$ to $M_\\alpha$ along a carefully chosen family of cubes. This allows\nus to prove necessary conditions for fractional singular integral operators\nsimilar to those for fractional maximal operators.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove necessary conditions for the boundedness of fractional operators on the variable Lebesgue spaces. More precisely, we find necessary conditions on an exponent function $\pp$ for a fractional maximal operator $M_\alpha$ or a non-degenerate fractional singular integral operator $T_\alpha$, $0 \leq \alpha < n$, to satisfy weak $(\pp,\qq)$ inequalities or strong $(\pp,\qq)$ inequalities, with $\qq$ being defined pointwise almost everywhere by % \[ \frac{1}{p(x)} - \frac{1}{q(x)} = \frac{\alpha}{n}. \] % We first prove preliminary results linking fractional averaging operators and the $K_0^\alpha$ condition, a qualitative condition on $\pp$ related to the norms of characteristic functions of cubes, and show some useful implications of the $K_0^\alpha$ condition. We then show that if $M_\alpha$ satisfies weak $(\pp,\qq)$ inequalities, then $\pp \in K_0^\alpha(\R^n)$. We use this to prove that if $M_\alpha$ satisfies strong $(\pp,\qq)$ inequalities, then $p_->1$. Finally, we prove a powerful pointwise estimate for $T_\alpha$ that relates $T_\alpha$ to $M_\alpha$ along a carefully chosen family of cubes. This allows us to prove necessary conditions for fractional singular integral operators similar to those for fractional maximal operators.
可变勒贝格空间上分数算子有界性的必要条件
在本文中,我们证明了可变勒贝格空间上分数算子有界性的必要条件。更准确地说,我们为分数最大算子$M_α$或非退化分数奇异积分算子$T_α$,$0 \leq \alpha < n$找到了指数函数$\pp$上的必要条件,即满足弱$(\pp,\qq)$不等式或强$(\pp,\qq)$不等式、满足弱 $(\pp,\qq)$ 不等式或强 $(\pp,\qq)$ 不等式,其中 $\qq$ 几乎在任何地方都是由 % \[ \frac{1}{p(x)} - \frac{1}{q(x)} = \frac{alpha}{n}定义的。\] % 我们首先证明了分数平均算子与 $K_0^\alpha$ 条件(与立方体特征函数的矩阵有关的 $\pp$ 的定性条件)之间的初步结果,并展示了 $K_0^\alpha$ 条件的一些有用含义。然后我们证明,如果 $M_\alpha$ 满足弱$(\pp,\qq)$ 不等式,那么$pp 在 K_0^\alpha(\R^n)$ 中。最后,我们为 $T_\alpha$ 证明了一个强大的点估计,它将 $T_\alpha$ 与 $M_\alpha$ 沿着一个精心选择的立方体家族联系起来。这使我们能够证明分数奇异积分算子的必要条件,类似于分数最大算子的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信