Triebel-Lizorkin spaces in Dunkl setting

Chuhan Sun, Zhiming Wang
{"title":"Triebel-Lizorkin spaces in Dunkl setting","authors":"Chuhan Sun, Zhiming Wang","doi":"arxiv-2408.05227","DOIUrl":null,"url":null,"abstract":"We establish Triebel-Lizorkin spaces in the Dunkl setting which are\nassociated with finite reflection groups on the Euclidean space. The group\nstructures induce two nonequivalent metrics: the Euclidean metric and the Dunkl\nmetric. In this paper, the L^2 space and the Dunkl-Calderon-Zygmund singular\nintegral operator in the Dunkl setting play a fundamental role. The main tools\nused in this paper are as follows: (i) the Dunkl-Calder\\'on-Zygmund singular\nintegral operator and a new Calderon reproducing formula in L^2 with the\nTriebel-Lizorkin space norms; (ii) new test functions in terms of the \\L^2\nfunctions and distributions; (iii) the Triebel-Lizorkin spaces in the Dunkl\nsetting which are defined by the wavelet-type decomposition with norms and the\nanalogous atomic decomposition of the Hardy spaces.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We establish Triebel-Lizorkin spaces in the Dunkl setting which are associated with finite reflection groups on the Euclidean space. The group structures induce two nonequivalent metrics: the Euclidean metric and the Dunkl metric. In this paper, the L^2 space and the Dunkl-Calderon-Zygmund singular integral operator in the Dunkl setting play a fundamental role. The main tools used in this paper are as follows: (i) the Dunkl-Calder\'on-Zygmund singular integral operator and a new Calderon reproducing formula in L^2 with the Triebel-Lizorkin space norms; (ii) new test functions in terms of the \L^2 functions and distributions; (iii) the Triebel-Lizorkin spaces in the Dunkl setting which are defined by the wavelet-type decomposition with norms and the analogous atomic decomposition of the Hardy spaces.
邓克尔背景下的特里贝尔-利佐尔金空间
我们在 Dunkl 设置中建立了与欧几里得空间上的有限反射群相关联的 Triebel-Lizorkin 空间。群结构诱导出两种非等价度量:欧几里得度量和邓克尔度量。在本文中,L^2 空间和邓克尔背景下的邓克尔-卡尔德隆-齐格蒙奇异积分算子起着基本作用。本文使用的主要工具如下:(i) Dunkl-Calder\'on-Zygmund 奇异积分算子和 L^2 中带有 Triebel-Lizorkin 空间规范的新 Calderon 重现公式;(ii) 用 \L^2 函数和分布表示的新检验函数;(iii) Dunklsetting 中的 Triebel-Lizorkin 空间,这些空间由带有规范的小波型分解和 Hardy 空间的类似原子分解定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信