The finite bivariate biorthogonal I -- Konhauser polynomials

Esra Güldoğan Lekesiz, Bayram Çekim, Mehmet Ali Özarslan
{"title":"The finite bivariate biorthogonal I -- Konhauser polynomials","authors":"Esra Güldoğan Lekesiz, Bayram Çekim, Mehmet Ali Özarslan","doi":"arxiv-2408.07811","DOIUrl":null,"url":null,"abstract":"In this paper, a finite set of biorthogonal polynomials in two variables is\nproduced using Konhauser polynomials. Some properties containing operational\nand integral representation, Laplace transform, fractional calculus operators\nof this family are studied. Also, computing Fourier transform for the new set,\na new family of biorthogonal functions are derived via Parseval's identity. On\nthe other hand, this finite set is modified by adding two new parameters in\norder to have semigroup property and construct fractional calculus operators.\nFurther, integral equation and integral operator are also derived for the\nmodified version.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a finite set of biorthogonal polynomials in two variables is produced using Konhauser polynomials. Some properties containing operational and integral representation, Laplace transform, fractional calculus operators of this family are studied. Also, computing Fourier transform for the new set, a new family of biorthogonal functions are derived via Parseval's identity. On the other hand, this finite set is modified by adding two new parameters in order to have semigroup property and construct fractional calculus operators. Further, integral equation and integral operator are also derived for the modified version.
有限双变量双谐波 I - 康豪斯多项式
本文利用 Konhauser 多项式生成了一组有限的两变量双谐波多项式。本文研究了该族的运算和积分表示、拉普拉斯变换和分数微积分算子的一些性质。此外,在计算新集合的傅立叶变换时,还通过帕瑟瓦尔特性导出了新的双峰函数族。另一方面,通过添加两个新参数对该有限集进行修改,使其具有半群性质并构造出分数微积分算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信