{"title":"Comparison of Gini means with fixed number of variables","authors":"Richárd Grünwald, Zsolt Páles","doi":"arxiv-2408.07658","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the global comparison problem of Gini means with\nfixed number of variables on a subinterval $I$ of $\\mathbb{R}_+$, i.e., the\nfollowing inequality \\begin{align}\\tag{$\\star$}\\label{ggcabs} G_{r,s}^{[n]}(x_1,\\dots,x_n) \\leq G_{p,q}^{[n]}(x_1,\\dots,x_n), \\end{align} where $n\\in\\mathbb{N},n\\geq2$ is fixed, $(p,q),(r,s)\\in\\mathbb{R}^2$ and\n$x_1,\\dots,x_n\\in I$. Given a nonempty subinterval $I$ of $\\mathbb{R}_+$ and $n\\in\\mathbb{N}$, we\nintroduce the relations \\[ \\Gamma_n(I):=\\{((r,s),(p,q))\\in\\mathbb{R}^2\\times\\mathbb{R}^2\\mid\n\\eqref{ggcabs}\\mbox{ holds for all } x_1,\\dots,x_n\\in I\\},\\qquad \\Gamma_\\infty(I):=\\bigcap_{n=1}^\\infty\\Gamma_n(I). \\] In the paper, we investigate the properties of these sets and their\ndependence on $n$ and on the interval $I$ and we establish a characterizations\nof these sets via a constrained minimum problem by using a variant of the\nLagrange multiplier rule. We also formulate two open problems at the end of the\npaper.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the global comparison problem of Gini means with
fixed number of variables on a subinterval $I$ of $\mathbb{R}_+$, i.e., the
following inequality \begin{align}\tag{$\star$}\label{ggcabs} G_{r,s}^{[n]}(x_1,\dots,x_n) \leq G_{p,q}^{[n]}(x_1,\dots,x_n), \end{align} where $n\in\mathbb{N},n\geq2$ is fixed, $(p,q),(r,s)\in\mathbb{R}^2$ and
$x_1,\dots,x_n\in I$. Given a nonempty subinterval $I$ of $\mathbb{R}_+$ and $n\in\mathbb{N}$, we
introduce the relations \[ \Gamma_n(I):=\{((r,s),(p,q))\in\mathbb{R}^2\times\mathbb{R}^2\mid
\eqref{ggcabs}\mbox{ holds for all } x_1,\dots,x_n\in I\},\qquad \Gamma_\infty(I):=\bigcap_{n=1}^\infty\Gamma_n(I). \] In the paper, we investigate the properties of these sets and their
dependence on $n$ and on the interval $I$ and we establish a characterizations
of these sets via a constrained minimum problem by using a variant of the
Lagrange multiplier rule. We also formulate two open problems at the end of the
paper.