Comparison of Gini means with fixed number of variables

Richárd Grünwald, Zsolt Páles
{"title":"Comparison of Gini means with fixed number of variables","authors":"Richárd Grünwald, Zsolt Páles","doi":"arxiv-2408.07658","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the global comparison problem of Gini means with\nfixed number of variables on a subinterval $I$ of $\\mathbb{R}_+$, i.e., the\nfollowing inequality \\begin{align}\\tag{$\\star$}\\label{ggcabs} G_{r,s}^{[n]}(x_1,\\dots,x_n) \\leq G_{p,q}^{[n]}(x_1,\\dots,x_n), \\end{align} where $n\\in\\mathbb{N},n\\geq2$ is fixed, $(p,q),(r,s)\\in\\mathbb{R}^2$ and\n$x_1,\\dots,x_n\\in I$. Given a nonempty subinterval $I$ of $\\mathbb{R}_+$ and $n\\in\\mathbb{N}$, we\nintroduce the relations \\[ \\Gamma_n(I):=\\{((r,s),(p,q))\\in\\mathbb{R}^2\\times\\mathbb{R}^2\\mid\n\\eqref{ggcabs}\\mbox{ holds for all } x_1,\\dots,x_n\\in I\\},\\qquad \\Gamma_\\infty(I):=\\bigcap_{n=1}^\\infty\\Gamma_n(I). \\] In the paper, we investigate the properties of these sets and their\ndependence on $n$ and on the interval $I$ and we establish a characterizations\nof these sets via a constrained minimum problem by using a variant of the\nLagrange multiplier rule. We also formulate two open problems at the end of the\npaper.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the global comparison problem of Gini means with fixed number of variables on a subinterval $I$ of $\mathbb{R}_+$, i.e., the following inequality \begin{align}\tag{$\star$}\label{ggcabs} G_{r,s}^{[n]}(x_1,\dots,x_n) \leq G_{p,q}^{[n]}(x_1,\dots,x_n), \end{align} where $n\in\mathbb{N},n\geq2$ is fixed, $(p,q),(r,s)\in\mathbb{R}^2$ and $x_1,\dots,x_n\in I$. Given a nonempty subinterval $I$ of $\mathbb{R}_+$ and $n\in\mathbb{N}$, we introduce the relations \[ \Gamma_n(I):=\{((r,s),(p,q))\in\mathbb{R}^2\times\mathbb{R}^2\mid \eqref{ggcabs}\mbox{ holds for all } x_1,\dots,x_n\in I\},\qquad \Gamma_\infty(I):=\bigcap_{n=1}^\infty\Gamma_n(I). \] In the paper, we investigate the properties of these sets and their dependence on $n$ and on the interval $I$ and we establish a characterizations of these sets via a constrained minimum problem by using a variant of the Lagrange multiplier rule. We also formulate two open problems at the end of the paper.
固定变量数量下的基尼系数比较
在本文中,我们考虑的是在 $\mathbb{R}_+$ 的子区间 $I$ 上具有固定变量数的基尼系数的全局比较问题,即以下不等式G_{r,s}^{[n]}(x_1,\dots,x_n) \leq G_{p,q}^{[n]}(x_1,\dots,x_n), \end{align} 其中 $n\in\mathbb{N},n\geq2$ 是固定的,$(p,q),(r,s)\in\mathbb{R}^2$ 和 $x_1,\dots,x_n\in I$.给定 $\mathbb{R}_+$ 的非空子区间 $I$ 和 $n/in/mathbb{N}$,我们引入关系 \[ \Gamma_n(I):=\{((r,s),(p,q))/in\mathbb{R}^2\times\mathbb{R}^2mideqref{ggcabs}\mbox{ holds for all } x_1,\dots,x_n\in I\},\qquad\Gamma_\infty(I):=\bigcap_{n=1}^\inftyGamma_n(I).\]在本文中,我们研究了这些集合的性质及其对 $n$ 和区间 $I$ 的依赖性,并利用拉格朗日乘法法则的变体,通过受限最小问题建立了这些集合的特征。我们还在本文末尾提出了两个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信