On criteria for periodic wavelet frame

Anastassia Gorsanova, Elena Lebedeva
{"title":"On criteria for periodic wavelet frame","authors":"Anastassia Gorsanova, Elena Lebedeva","doi":"arxiv-2409.01165","DOIUrl":null,"url":null,"abstract":"We provide constructive necessary and sufficient conditions for a family of\nperiodic wavelets to be a Parseval wavelet frame. The criterion generalizes\nunitary and oblique extension principles. It may be very useful for\napplications to signal processing because it allows to design any wavelet frame\nexplicitly starting with refinable functions. The practically important case of\none wavelet generator and refinable functions being trigonometric polynomials\nis discussed in details. As an application we study approximation properties of\nframes and give conditions for a coincidence of approximation orders provided\nby periodic multiresolution analysis and by a wavelet frame in terms of our\ncriterion.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We provide constructive necessary and sufficient conditions for a family of periodic wavelets to be a Parseval wavelet frame. The criterion generalizes unitary and oblique extension principles. It may be very useful for applications to signal processing because it allows to design any wavelet frame explicitly starting with refinable functions. The practically important case of one wavelet generator and refinable functions being trigonometric polynomials is discussed in details. As an application we study approximation properties of frames and give conditions for a coincidence of approximation orders provided by periodic multiresolution analysis and by a wavelet frame in terms of our criterion.
关于周期性小波框架的标准
我们提供了使一个周期性小波家族成为 Parseval 小波框架的建设性必要条件和充分条件。该标准概括了单元扩展和斜扩展原理。它对信号处理的应用可能非常有用,因为它允许从可细化函数开始,明确设计任何小波框架。我们详细讨论了一个小波发生器和可细化函数为三角多项式的重要实际案例。作为应用,我们研究了小波框架的近似特性,并给出了周期多分辨率分析和小波框架所提供的近似阶数与我们的标准相吻合的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信