Local existence for systems of conservation laws with partial diffusion

Jean-Paul Adogbo, Raphäel Danchin
{"title":"Local existence for systems of conservation laws with partial diffusion","authors":"Jean-Paul Adogbo, Raphäel Danchin","doi":"arxiv-2409.04791","DOIUrl":null,"url":null,"abstract":"This paper is dedicated to the study of the local existence theory of the\nCauchy problem for symmetric hyperbolic partially diffusive systems (also known\nas hyperbolic-parabolic system) in dimension $d\\ge 1$. The system under\nconsideration is a coupling between a symmetric hyperbolic system and a\nparabolic system. We address the question of well-posedness for large data\nhaving critical Besov regularity. This improves the analysis of Serre\n\\cite{Serr10} and Kawashima \\cite{Kawashima83}. Our results allow for initial\ndata whose components have different regularities and we enlarge the class of\nthe components experiencing the diffusion to $H^s$, with $s>d/2$ (instead of\n$s>d/2+1$ in Serre's work and $s>d/2+2$ in Kawashima's one). Our results rely\non G\\r{a}rding's inequality, composition estimates and product laws. As an\nexample, we consider the Navier-Stokes-Fourier equations.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"408 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is dedicated to the study of the local existence theory of the Cauchy problem for symmetric hyperbolic partially diffusive systems (also known as hyperbolic-parabolic system) in dimension $d\ge 1$. The system under consideration is a coupling between a symmetric hyperbolic system and a parabolic system. We address the question of well-posedness for large data having critical Besov regularity. This improves the analysis of Serre \cite{Serr10} and Kawashima \cite{Kawashima83}. Our results allow for initial data whose components have different regularities and we enlarge the class of the components experiencing the diffusion to $H^s$, with $s>d/2$ (instead of $s>d/2+1$ in Serre's work and $s>d/2+2$ in Kawashima's one). Our results rely on G\r{a}rding's inequality, composition estimates and product laws. As an example, we consider the Navier-Stokes-Fourier equations.
具有部分扩散的守恒律系统的局部存在性
本文致力于研究维数为 $d\ge 1$ 的对称双曲部分扩散系统(又称双曲-抛物系统)的考奇问题的局部存在性理论。所考虑的系统是对称双曲系统与抛物系统之间的耦合。我们解决了具有临界贝索夫正则性的大数据的良好拟合问题。这改进了 Serre cite{Serr10} 和 Kawashima cite{Kawashima83} 的分析。我们的结果允许初始数据的成分具有不同的正则性,而且我们将经历扩散的成分类别扩大到了$H^s$,其中$s>d/2$(而不是Serre工作中的$s>d/2+1$和Kawashima工作中的$s>d/2+2$)。我们的结果依赖于 G\r{a}rding 不等式、组成估计和积定律。作为一个例子,我们考虑 Navier-Stokes-Fourier 方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信