A \((\phi_\frac{n}{s}, \phi)\)-Poincaré inequality on John domains

Pub Date : 2024-09-03 DOI:10.1007/s10476-024-00038-5
S. Feng, T. Liang
{"title":"A \\((\\phi_\\frac{n}{s}, \\phi)\\)-Poincaré inequality on John domains","authors":"S. Feng,&nbsp;T. Liang","doi":"10.1007/s10476-024-00038-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\Omega\\)</span> be a bounded domain in <span>\\(\\mathbb{R}^n\\)</span> \nwith <span>\\(n\\ge2\\)</span> and <span>\\(s\\in(0,1)\\)</span>. \nAssume that <span>\\(\\phi \\colon [0, \\infty) \\to [0, \\infty)\\)</span> is a Young function obeying the doubling condition with the \nconstant <span>\\(K_\\phi&lt; 2^{\\frac{n}{s}}\\)</span>. We demonstrate that <span>\\(\\Omega\\)</span> supports \na <span>\\((\\phi_\\frac{n}{s}, \\phi)\\)</span>-Poincaré inequality if it is a John domain. Alternatively, assume further that <span>\\(\\Omega\\)</span> \nis a bounded domain that is quasiconformally equivalent to a uniform domain (for <span>\\(n\\geq3\\)</span>) or a simply connected domain (for <span>\\(n=2\\)</span>), \nthen we show that <span>\\(\\Omega\\)</span> is a John domain if a \n<span>\\((\\phi_\\frac{n}{s}, \\phi)\\)</span>-Poincaré inequality holds.\n</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00038-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\Omega\) be a bounded domain in \(\mathbb{R}^n\) with \(n\ge2\) and \(s\in(0,1)\). Assume that \(\phi \colon [0, \infty) \to [0, \infty)\) is a Young function obeying the doubling condition with the constant \(K_\phi< 2^{\frac{n}{s}}\). We demonstrate that \(\Omega\) supports a \((\phi_\frac{n}{s}, \phi)\)-Poincaré inequality if it is a John domain. Alternatively, assume further that \(\Omega\) is a bounded domain that is quasiconformally equivalent to a uniform domain (for \(n\geq3\)) or a simply connected domain (for \(n=2\)), then we show that \(\Omega\) is a John domain if a \((\phi_\frac{n}{s}, \phi)\)-Poincaré inequality holds.

分享
查看原文
约翰域上的 $$(\phi_\frac{n}{s}, \phi)$$ -Poincaré 不等式
让(\Omega\)是(\mathbb{R}^n\)中的一个有界域,具有(n\ge2\)和(s\in(0,1)\)。假设 \(\phi \colon [0, \infty) \to [0, \infty)\) 是一个遵守翻倍条件的Young函数,常数为 \(K_\phi<2^{/frac{n}{s}}/)。我们证明,如果 \(\Omega\) 是一个约翰域,那么它支持一个 \((\phi_\frac{n}{s}, \phi)\)-Poincaré不等式。或者,进一步假设 \(Omega)是一个有界域,它等价于一个均匀域(对于 \(n\geq3\))或一个简单连接域(对于 \(n=2\)),那么我们证明如果一个 \((\phi_\frac{n}{s}, \phi)\)-Poincaré不等式成立,那么 \(Omega)就是一个约翰域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信