A generalization of Lévy’s theorem on positive matrix semigroups

IF 0.6 3区 数学 Q3 MATHEMATICS
M. Gerlach
{"title":"A generalization of Lévy’s theorem on positive matrix semigroups","authors":"M. Gerlach","doi":"10.1007/s10476-024-00039-4","DOIUrl":null,"url":null,"abstract":"<p>We generalize a fundamental theorem on positive matrix semigroups stating that each component is either strictly positive for all times or identically zero (“Lévy’s Theorem”). Our proof of this fact that does not require the matrices to be continuous at time zero. We also provide a formulation of this theorem in the terminology of positive operator semigroups on sequence spaces.</p>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10476-024-00039-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize a fundamental theorem on positive matrix semigroups stating that each component is either strictly positive for all times or identically zero (“Lévy’s Theorem”). Our proof of this fact that does not require the matrices to be continuous at time zero. We also provide a formulation of this theorem in the terminology of positive operator semigroups on sequence spaces.

关于正矩阵半群的莱维定理的一般化
我们概括了正矩阵半群的一个基本定理,即每个分量要么在所有时间都严格为正,要么同等于零("莱维定理")。我们对这一事实的证明并不要求矩阵在时间为零时是连续的。我们还用序列空间上的正算子半群术语对这一定理进行了表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信