{"title":"Causes of Energy Density Inhomogeneity in Energy Momentum Squared Gravity","authors":"Z. Yousaf, M. Z. Bhatti, A. Farhat","doi":"10.1134/S0202289324700269","DOIUrl":null,"url":null,"abstract":"<p>In the presence of an anisotropic fluid, we examine the irregularity factors for a spherically symmetric relativistic matter. In <span>\\(f(\\mathcal{G},T^{2})\\)</span> gravity, we investigate the equations of motion and dynamical relations using a systematic construction, where <span>\\(T\\)</span> stands for the trace of the energy-momentum tensor, and <span>\\(\\mathcal{G}\\)</span> is the Gauss–Bonnet term. With the use of the Weyl tensor, we examine two well-known differential equations that would lead to an analysis of the sources of inhomogeneities. In <span>\\(f(\\mathcal{G},T^{2})\\)</span> gravity, the irregularity factors are investigated by taking specific cases in the adiabatic and non-adiabatic regimes. We find that the conformal tensor and additional curvature terms compromise inhomogeneity for a pressureless nonradiating fluid and an isotropic fluid. In contrast to other cases, for a nonradiating anisotropic fluid, we observe that the term <span>\\((\\Pi+\\mathcal{E})\\)</span> now accounts for the survival of density inhomogeneity, rather than just the Weyl tensor and the modified terms. The last case clearly illustrates how several components, namely, radiating terms, the fluid shear and the expansion scalar in the <span>\\(f(\\mathcal{G},T^{2})\\)</span> framework, are accountable for the formation of inhomogeneities from a homogeneous state of the structure. In the case <span>\\(f(\\mathcal{G},T^{2})=0\\)</span>, all our results reduce to those of GR.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitation and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0202289324700269","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the presence of an anisotropic fluid, we examine the irregularity factors for a spherically symmetric relativistic matter. In \(f(\mathcal{G},T^{2})\) gravity, we investigate the equations of motion and dynamical relations using a systematic construction, where \(T\) stands for the trace of the energy-momentum tensor, and \(\mathcal{G}\) is the Gauss–Bonnet term. With the use of the Weyl tensor, we examine two well-known differential equations that would lead to an analysis of the sources of inhomogeneities. In \(f(\mathcal{G},T^{2})\) gravity, the irregularity factors are investigated by taking specific cases in the adiabatic and non-adiabatic regimes. We find that the conformal tensor and additional curvature terms compromise inhomogeneity for a pressureless nonradiating fluid and an isotropic fluid. In contrast to other cases, for a nonradiating anisotropic fluid, we observe that the term \((\Pi+\mathcal{E})\) now accounts for the survival of density inhomogeneity, rather than just the Weyl tensor and the modified terms. The last case clearly illustrates how several components, namely, radiating terms, the fluid shear and the expansion scalar in the \(f(\mathcal{G},T^{2})\) framework, are accountable for the formation of inhomogeneities from a homogeneous state of the structure. In the case \(f(\mathcal{G},T^{2})=0\), all our results reduce to those of GR.
期刊介绍:
Gravitation and Cosmology is a peer-reviewed periodical, dealing with the full range of topics of gravitational physics and relativistic cosmology and published under the auspices of the Russian Gravitation Society and Peoples’ Friendship University of Russia. The journal publishes research papers, review articles and brief communications on the following fields: theoretical (classical and quantum) gravitation; relativistic astrophysics and cosmology, exact solutions and modern mathematical methods in gravitation and cosmology, including Lie groups, geometry and topology; unification theories including gravitation; fundamental physical constants and their possible variations; fundamental gravity experiments on Earth and in space; related topics. It also publishes selected old papers which have not lost their topicality but were previously published only in Russian and were not available to the worldwide research community